Глядя на лазурное море, Чандра перевел взгляд на лежащую на шезлонге книгу «Рентгеновские лучи и теория относительности» Комптона. Из этой книги он узнал о специальной теории относительности Эйнштейна, о том, что происходит с объектами, движущимися необычайно быстро, со скоростью, близкой к скорости света. При таких скоростях классическая ньютоновская физика неприменима. Скорость света играет центральную роль в теории Эйнштейна: она всегда составляет 300000 километров в секунду, причем независимо от движения наблюдателя относительно источника света. Это абсолютный предел скорости, и никакой материальный объект не может двигаться быстрее. Из теории относительности также следует, что масса любых частиц зависит от их скорости. «Могут появиться сюрпризы», — задумался Чандра, сидя в своем шезлонге. И тут его осенило: «Я спросил себя, а какие могут быть скорости у электронов в центре белых карликов? Это интересно, подумал я, а если еще учесть рассчитанную мною их высокую плотность…» Эта скорость оказалась огромной, больше половины скорости света.
Чандра был буквально ошеломлен, хотя хорошо понимал возможность неожиданных последствий учета релятивистских эффектов в теориях строения звезд. Удивительно, что эти эффекты не учел Фаулер, который лишь допускал — как выяснилось, ошибочно, — что плотность внутри белого карлика не больше ста тысяч граммов на квадратный сантиметр. Поэтому-то и предполагалось, что электроны в белом карлике движутся достаточно медленно, а потому их движение описывалось уравнениями ньютоновской физики. Становилось совершенно ясно: расчеты Фаулера справедливы лишь для малых скоростей электронов. Озарение Чандры оказалось не просто счастливой случайностью. Уравнения заговорили с ним, и он уже не мог остановиться, не доведя каждую деталь до совершенства. Чандра сумел понять огромную важность своих результатов и всю картину в целом. В этом-то и заключалась его гениальность.
Прежде чем проводить дальнейшие расчеты и убедиться в правоте своих вычислений, молодому ученому предстояло объяснить столь высокие скорости частиц. Ключ к разгадке заключался в поразительном следствии из уравнений квантовой механики, которое Гейзенберг открыл три года назад. Для Чандры Гейзенберг был гораздо больше, чем автор научной статьи: он помнил лицо, рукопожатие, чувствовал поддержку Гейзенберга.
Принцип неопределенности Гейзенберга состоит в том, что существует обратная связь между координатами частицы в пространстве и ее скоростью: мы можем очень точно определить местоположение частицы, но не можем одновременно измерить с той же точностью ее скорость. И наоборот. Любая попытка точно определить положение электрона приводит к внешнему воздействию на него и соответствующему изменению скорости. Фаулер должен был с самого начала воспользоваться выводами специальной теории относительности, но он рассматривал случай нерелятивистского вырождения и не принял во внимание релятивистские эффекты. А Чандра учел выводы специальной теории относительности и намеревался изучить то, что он назвал релятивистским вырожденным электронным газом.
Чандра понимал, что расчеты с использованием всего аппарата специальной теории относительности чрезвычайно сложны, а потому использовал приближение, согласно которому скорость электронов внутри белого карлика очень близка к скорости света. Чандра рассчитал связь между давлением и плотностью релятивистского вырожденного электронного газа, считая его идеальным квантовым газом и игнорируя электромагнитное взаимодействие частиц. Как и Фаулер, Чандра сосредоточился на изучении полностью остывших белых карликов. И применение теории относительности привело к поразительному результату: существовал верхний предел массы белого карлика. По расчетам Чандры, этот верхний предел массы лишь немного больше, чем масса Солнца[31]
. Но что произойдет с белым карликом, когда он выжжет все свое топливо, если его масса превышает предел Чандры? Поскольку ничто не мешает сжатию звезды, может ли она сжиматься бесконечно? Чандре показалось, что он опроверг теорию Фаулера и нашел новое решение проблемы Эддингтона — то самое, которое Эддингтон назвал абсурдным.И вот наконец корабль достиг порта Генуи и направился к Ла-Маншу. Чандра прибыл в Лондон 19 августа. Вскоре он уже был в Кембридже — в приподнятом настроении и с большими надеждами. В Индии все считали его гением, но здесь была абсолютно иная ситуация: в Кембридже его окружали самые блестящие физики мира — «Не только Эддингтон и Харди, но также множество людей, чьи имена я не упоминал. Я получил сильнейший опыт отрезвления», — позже вспоминал он.
Уверенность в себе постепенно испарялась. Он даже начал думать, что единственной причиной приглашения в Кембридж была его давняя переписка с Фаулером.