Читаем Импульсные блоки питания для IBM PC полностью

Каждый вариант схемотехнического исполнения базовых цепей предполагает наличие токозадающих резисторов, включенных между вторичными обмотками согласующего трансформатора и базовыми выводами силовых транзисторов. Позиционные обозначения элементов всех вариантов одинаковы. Резисторы рассчитаны на равную для всех максимальную мощность, которая составляет 0,25 Вт. Номиналы резисторов R1 и R2 могут иметь значения от 2,2 до 4,7 Ом. Естественно, что такой диапазон определяется наличием разных фирм-производителей источников. В конкретном изделии элементы каждой из базовой цепи должны быть полностью идентичны. Коммутация силовых транзисторов в этих схемах производится сигналами внешнего задающего генератора, питание на который поступает от отдельного маломощного источника. В этом случае нет необходимости формировать импульсы начального запуска схемы с помощью дополнительной обмотки в согласующем трансформаторе. В конструкции согласующего трансформатора применяются только сигнальные обмотки. Резисторы, подающие положительное смещение от первичного источника в базовые цепи силовых транзисторов, здесь также отсутствуют. Конфигурации первичных обмоток согласующего трансформатора определяются структурой транзисторных цепей выходного каскада промежуточного усилителя. Их возможные варианты были приведены на рис. 3.5, 3.7, 3.8.

На рис. 3.12б базовые цепи транзисторов содержат только резистивные элементы. Скорость открывания силовых транзисторов определяется лишь динамическими свойствами самих транзисторов. Здесь никаких специальных мер для ускорения процессов коммутации силовых элементов не предусмотрено. В схеме, приведенной на рис. 3.12а, параллельно резисторам R1 и R2 подключено по конденсатору. Конденсаторы могут быть как керамическими, так и электролитическими. Конденсаторы используются как элементы, ускоряющие открывание силовых транзисторов в момент появления фронта положительного импульса. В начальный момент времени пока конденсатор не перезарядился, через него протекает максимальный ток. Переход транзисторов в насыщение происходит с увеличенной скоростью по сравнению со схемами, выполненными без конденсатора. Фронт импульса, формируемого силовым транзистором, получается крутым. Динамические потери при включении транзистора снижаются, и улучшается тепловой режим его работы. По мере заряда конденсатора протекание тока через него снижается, основной же ток поступает в базу через резисторы, включенные между вторичной обмоткой согласующего трансформатора и базой транзистора. Когда на вторичной обмотке возникает спад открывающего импульса, то оказывается, что к базе транзистора приложены запирающие напряжения заряженного конденсатора и обмотки. Происходит быстрое закрывание транзистора, благодаря ускоренному рассасыванию избыточных положительных зарядов, накопленных в базе. На рис. 3.12в представлен еще один вариант ускорения коммутации силовых транзисторов. Вместо конденсаторов для этой цели применены ускоряющие диоды D1 и D2. Используемые диоды должны обладать хорошими скоростными характеристиками для работы с импульсными сигналами. Время восстановления их обратного сопротивления должно составлять несколько наносекунд. В течении действия открывающегося импульса на базе каждого из транзисторов диоды имеют обратное смещение, поэтому они не проводят ток и не оказывают эффективного влияния на процесс открывания транзисторов. Наличие диодов сказывается, когда на вторичных обмотках появляются спады положительных импульсов и транзисторы начинают закрываться. Резкий спад импульса приводит к быстрому открыванию диода, который в проводящем состоянии имеет сопротивление меньшее, чем резистор, параллельно которому он включен. Происходит резкое изменение направления течения тока. Скорость нарастания тока, вытекающего из базы, увеличивается очень быстро. Также быстро транзистор закрывается, избыточные носители в базе рассасываются лавинообразно. Переход транзистора в закрытое состояние протекает с большой скоростью, длительность фронта или спада получается минимальной. В этом случае так же, как и в предыдущем, благодаря введению дополнительных элементов, ускоряющих коммутацию силовых транзисторов, снижаются динамические потери во время переходных процессов при переключении транзисторов.

Общим для всех вариантов каскадов усилителей мощности импульсных преобразователей является способ включения силового трансформатора. Первичная обмотка трансформатора T4 по схеме, показанной на рис. 3.2, включена в диагональ моста силового каскада. Подключение произведено через раз делительный конденсатор C15, устраняющий возможность подмагничивания сердечника трансформатора T4 постоянным током. Параллельно первичной обмотке T4 подсоединена RC цепь на элементах C16 и R32. Снижая общую добротность резонансного контура, в состав которого входит первичная обмотка T4, эти элементы способствуют понижению уровня выбросов и паразитных колебаний, возникающих в моменты переключения силовых транзисторов Q5 и Q6.

Режим работы силовых транзисторов пропорционально зависит от величины нагрузки, подключенной к выходам вторичных цепей источника питания. По мере увеличения нагрузки возрастает импульсный ток, протекающий через транзисторы Q5 и Q6. Также возрастает время нахождения каждого из этих транзисторов в активном состоянии. Для наблюдения формы импульсного напряжения, формируемого транзисторным преобразователем, выберем точку соединения первичной обмотки трансформатора T4 и конденсатора C15. Если измерения производить с помощью осциллографа относительно эмиттера Q6, то форма напряжения в выбранной контрольной точке будет соответствовать диаграммам, представленным на рис. 2.13а – 2.13 в. Изменение вида диаграммы напряжения будет происходить по мере возрастания суммарной нагрузки по всем вторичным каналам напряжений. Повышение нагрузки будет сопровождаться увеличением импульсного тока через транзисторы Q5 и Q6, снижением длительности паузы между импульсами положительной и отрицательной полярностей, а также появлением отчетливых очертаний этих импульсов. При правильной работе схемы управления и усилителя мощности импульсы имеют одинаковую длительность. Полный размах импульсного сигнала равен величине выпрямленного сетевого напряжения, то есть ~310 В. Амплитуда импульсов составляет половину этого значения. Пауза между импульсами фиксируется также на уровне, соответствующем половине напряжения питания силового каскада.

Перейти на страницу:

Похожие книги

Стратегические операции люфтваффе
Стратегические операции люфтваффе

Бомбардировочной авиации люфтваффе, любимому детищу рейхсмаршала Геринга, отводилась ведущая роль в стратегии блицкрига. Она была самой многочисленной в ВВС нацистской Германии и всегда первой наносила удар по противнику. Между тем из большинства книг о люфтваффе складывается впечатление, что они занимались исключительно поддержкой наступающих войск и были «не способны осуществлять стратегические бомбардировки». Также «бомберам Гитлера» приписывается масса «террористических» налетов: Герника, Роттердам, Ковентри, Белград и т. д.Данная книга предлагает совершенно новый взгляд на ход воздушной войны в Европе в 1939–1941 годах. В ней впервые приведен анализ наиболее важных стратегических операций люфтваффе в начальный период Второй мировой войны. Кроме того, читатели узнают ответы на вопросы: правда ли, что Германия не имела стратегических бомбардировщиков, что немецкая авиация была нацелена на выполнение чисто тактических задач, действительно ли советская ПВО оказалась сильнее английской и не дала немцам сровнять Москву с землей и не является ли мифом, что битва над Англией в 1940 году была проиграна люфтваффе.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука