Читаем Импульсные блоки питания для IBM PC полностью

На рис. 3.15 приведены основные элементы узла защиты. Нумерация элементов относится только к компонентам этого рисунка. На схеме показаны первичная цепь каскада промежуточного усилителя с согласующим трансформатором T, упрощенная схема включения микросхемы TL494. Узел защиты представлен полнофункциональной схемой.

Узел защиты выполняет следующие основные функции:

• контроль длительности импульсов управления силовым каскадом;

• блокировка работы узла ШИМ преобразователя в случае возникновения КЗ в каналах с отрицательными номиналами напряжений.

Оценка временного интервала, занимаемого положительным импульсом, проводится схемой постоянно. Слежение осуществляется с помощью элементов, подключенных к средней точке первичной обмотки согласующего трансформатора T. На среднем выводе первичной обмотки действует сигнал, форма которого представлена на рис. 2.11. Резистор R14, диод D5 и конденсатор C3 образуют схему выпрямителя и пассивного RC фильтра импульсного сигнала. В итоге на конденсаторе C3 появится положительное напряжение. Уровень этого напряжения будет прямо пропорционален длительности импульсов управления, формируемых микросхемой ШИМ преобразователя типа TL494. Напряжение, выделенное на конденсаторе C3, через резистор R10 подается на неинвертирующий вход внутреннего усилителя DA4 микросхемы TL494. На второй вход этого усилителя через вывод TL494/15 непосредственно поступает напряжение опорного источника +5 В. Логика работы этого каскада в части контроля длительности импульсов очень похожа на функционирование аналогичного узла из схемы, приведенной на рис. 3.2. Процесс контроля длительности импульсов управления включает в себя несколько этапов рабочего цикла узла защиты. На внутреннем усилителе DA4 производится постоянное сравнение уровней напряжений, действующих на его входах. Усилитель не оказывает влияния на работу ШИМ преобразователя, пока напряжение на выводе TL494/16 не превышает опорного уровня, постоянно установленного на выводе TL494/15. Увеличение нагрузки вторичной цепи источника питания будет отражаться на уровне напряжения, выделяемого на конденсаторе C3. Ширина управляющих импульсов будет возрастать, что вызовет увеличение напряжения на C3. Напряжение с конденсатора постоянно поступает на вход усилителя DA4. Пока оно ниже уровня, установленного на инвертирующем входе DA4, выходное напряжение усилителя равно нулю. Увеличение длительности выше установленного порога вызывает включение механизма ее постепенного ограничения. Усилитель на DA4 не охвачен обратной связью, поэтому на его выходе значение напряжения очень быстро изменяется. Повышение уровня на выходе усилителя DA4 приведет к блокировке усилителя ошибки DA3. На неинвертирующем входе ШИМ компаратора DA2 положительное напряжение также будет повышаться. При этом будет происходить принудительное ограничение длительности импульсов, формируемых схемой ШИМ преобразователя. Механизм активной защиты элементов источника питания включается с момента повышения напряжения на TL494/16 до уровня +5 В, когда напряжение на выходе DA4 начинает принимать положительное значение. Сначала наступает этап принудительного ограничения длительности импульсов управления. Сигнал рассогласования от DA3 растет, и ШИМ преобразователь старается компенсировать падение напряжения во вторичной цепи увеличением длительности импульсов управления. Когда происходит блокировка усилителя ошибки уровнем от DA4, продолжительность импульсов принудительно ограничивается. Если причина неконтролируемого увеличения потребления во вторичной цепи не устранена, то при достижении сигналом от усилителя DA4 уровня +3,2 В, на выходе ШИМ компаратора появляется устойчивый высокий уровень. Импульсных сигналов нет. Генерация выходных импульсов ШИМ преобразователем останавливается. Источник питания прекращает подачу энергии во вторичные цепи.

Фрагмент принципиальной схемы этого узла защиты (см. рис. 3.15) демонстрирует реализацию узла, ограничивающего длительности импульсов управления преобразователем, по сигналу датчика, полностью установленного во вторичной цепи источника питания. В предыдущем случае датчик располагался в силовой части схемы, а обработка его сигнала полностью была отнесена во вторичную цепь.

В случае возникновения КЗ по любому из каналов с отрицательными значениями напряжений, сигнал оповещения узла управления вырабатывается с помощью транзисторной схемы на Q1 и Q2. В базовой цепи транзистора Q1 включен делитель напряжения на резисторах R1 и R2. Питание делителя напряжения производится от разнополярных источников напряжения. Резистор R1 подключен к источнику опорного напряжения микросхемы TL494 с уровнем +5 В. Нижний по схеме вывод резистора R2 через резистор R3 соединен с цепью -12 В и через диод D1 с цепью -5 В. Номиналы сопротивлений резисторов R1 и R2 равны, поэтому напряжение на базе транзистора Q1 будет иметь небольшое отрицательное значение. Эмиттер этого транзистора соединен с общим проводом и, следовательно, переход база-эмиттер находится под напряжением обратного смещения. Транзистор закрыт, напряжение на коллекторе Q1 имеет высокий уровень. Поддерживание напряжения на базе, закрывающего транзистор Q1, возможно только в том случае, когда выдерживается расчетное соотношение напряжений -5 и -12 В. Если во вторичных цепях происходит КЗ, в результате которого одно из отрицательных напряжений изменяет свой уровень, то потенциал на базе транзистора Q1 начинает возрастать. В результате замыкания напряжения -12 В на диоде D1 появляется обратное смещение и блокируется подача напряжения -5 В на резистор R2. Базовый потенциал транзистора Q1 получит приращение положительного напряжения, подаваемого через R1. Аналогичная ситуация возникает при изменении напряжения -5 В до нулевого уровня. Диод D1 находится под воздействием отпирающего напряжения. Его анод подключается к общему проводу, а напряжение на катоде приобретает значение -0,7… -0,8 В. Это небольшое напряжение мало отличается от нулевого потенциала. На базе транзистора Q1 преобладающим оказывается положительный потенциал, которым транзистор открывается. Ключевая схема на транзисторе Q2 является нагрузкой транзисторного каскада на Q1. Коллектор транзистора Q2 через резистор R5 соединен с шиной питания ШИМ преобразователя, напряжение на которой в установившемся режиме находится в диапазоне +25. +30 В. Состояние ключа на Q2 является определяющим для функционирования микросхемы ШИМ преобразователя. В нормальном состоянии схемы защиты, когда в нагрузочной цепи уровни напряжений соответствуют номинальным, транзистор Q2 открыт и находится в насыщении. В этом состоянии происходит подключение резистора R5 через открытый транзистор Q2 к общему проводу. Диод D2 закрыт. Вывод 4 микросхемы TL494 через резистор R6 соединен с общим проводом. Внешние элементы не оказывают действия на работу ШИМ преобразователя. Когда происходит КЗ и последовательное переключение транзисторных ключей, напряжение на коллекторе закрытого транзистора определяется соотношением сопротивлений R6 и R5. Оно выбирается таким образом, чтобы уровень напряжения на выводе 4 схемы TL494 в момент срабатывания защиты составлял +5 В. Переключение транзисторов происходит достаточно быстро, поэтому напряжение на TL494/4 изменяется практически скачком. Резкое возрастание напряжение на неинвертирующем входе компаратора «мертвой зоны» блокирует логический элемент DD1. Работа схемы управления останавливается. Запуск ШИМ преобразователя возможен только после выключения и повторного подключения напряжения первичного питания, если предварительно устранена причина, вызывавшая КЗ или ненормированную перегрузку.

Работа схем защиты источника питания, представленных на рис. 3.2 и 3.15, характеризуется тем, что воздействие на ШИМ преобразователь при возникновении перегрузки по основным каналам и в случае КЗ слаботочных цепей производится по различным внутренним цепям схемы TL494. Узел защиты схемы, показанной на рис. 3.16, выполнен таким образом, что блокировка схемы управления производится по общему входу компаратора «мертвой зоны».

Рис. 3.16. Схема комплексной защиты от перегрузки (вариант 2)

Перейти на страницу:

Похожие книги

Стратегические операции люфтваффе
Стратегические операции люфтваффе

Бомбардировочной авиации люфтваффе, любимому детищу рейхсмаршала Геринга, отводилась ведущая роль в стратегии блицкрига. Она была самой многочисленной в ВВС нацистской Германии и всегда первой наносила удар по противнику. Между тем из большинства книг о люфтваффе складывается впечатление, что они занимались исключительно поддержкой наступающих войск и были «не способны осуществлять стратегические бомбардировки». Также «бомберам Гитлера» приписывается масса «террористических» налетов: Герника, Роттердам, Ковентри, Белград и т. д.Данная книга предлагает совершенно новый взгляд на ход воздушной войны в Европе в 1939–1941 годах. В ней впервые приведен анализ наиболее важных стратегических операций люфтваффе в начальный период Второй мировой войны. Кроме того, читатели узнают ответы на вопросы: правда ли, что Германия не имела стратегических бомбардировщиков, что немецкая авиация была нацелена на выполнение чисто тактических задач, действительно ли советская ПВО оказалась сильнее английской и не дала немцам сровнять Москву с землей и не является ли мифом, что битва над Англией в 1940 году была проиграна люфтваффе.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
Сертификация сложных технических систем
Сертификация сложных технических систем

Освещаются основные понятия и процедуры сертификации, мировая и отечественная практика ее проведения. Видное место отведено специальным системам сертификации, прежде всего сертификации сложных технических систем. Рассматривается взаимосвязь сертификации именеджмента. Показано место систем обеспечения качества продукции в управлении организациями. Даются важнейшие нормативные и методические документы по стандартизации, сертификации и аккредитации. Для студентов высших учебных заведений, обучающихся по направлению `Метрология, стандартизация, сертификация` и специальности `Стандартизация и сертификация`. Представляет интерес для специалистов в области управления качеством продукции и сертификации.

Анатолий Михайлович Шолом , Анатолий Шолом , Владимир Викторович Смирнов , Владимир Смирнов , Иосиф Аронов , Лидия Александровская

Технические науки / Образование и наука