Was there any other rule that the connection could obey that might make sense? Could the idea of "constant length" that worked so well in space alone somehow be applied in the new context, in spite of the obvious problems?
It was Neth who had pointed out that if you drew a space-time diagram with an outrageously large scale for the time axis — thirty-six times thirty-six spans for one heartbeat, say — then the different points of view of people moving with mildly different velocities could be mimicked quite accurately by the very slight rotations of the picture that would be needed to make their own particular paths point purely in the time direction. The problem remained that if lengths on this diagram were taken as fixed, two people moving with different velocities would consider each other's hearts to be beating faster than if their motion was the same, since a line that was "one heartbeat long" would span a smaller interval of time, and seem to pass more quickly, if it was slanted away from the time direction of the person who was measuring it. In reality, though, if the scale was large enough then the effect would be so tiny as to be impossible to measure. Who was to say that this wasn't happening?
It was an audacious hypothesis, but nobody had any better ideas. The team had labored for five shifts to find a geometry in accord with it. Their success, when it came, had been a mixed blessing, but nevertheless it had convinced Roi that they were on the right track.
The second geometry, like the first, was symmetrical about one special point, and allowed for circular orbits. Far from the Hub, the periods of these orbits were approximated by the old square-cube rule, but for smaller orbits the approximation broke down, and the periods became longer than that rule implied.
As a consequence, the ratio of garm-sard weight to shomal-junub weight was no longer fixed at three. It started out close to three for orbits far from the Hub, which was promising; the problem was, as you approached the Hub the ratio became larger, not smaller. The ratio was greater than three, everywhere, and the two and a quarter they had measured was nowhere to be found in this geometry.
The team had spent a further six shifts checking and rechecking their results. A single error anywhere in their calculations might have thrown the orbital periods and the weight ratios in the wrong direction. There was no error, though. The geometry they had found followed Zak's principle — that the sum of the true weights without spin was zero — and its connection respected Neth's idea that different people's space-time diagrams of moving objects should agree on the lengths of their paths. It was more beautiful, Roi thought, than the simpler geometry they'd found before; it certainly offered richer possibilities. But it did not describe the reality of the Splinter and the Hub.
As Roi had scrutinized the calculations, checking for some tiny, subtle mistake, an idea almost as outrageous as Neth's original hypothesis had occurred to her. Among other possibilities, they were hunting for a sign error: an addition in place of a subtraction, or vice versa. A mistake like that could easily be the cause of the problem. If there was no sign error in the calculation, though, might there not be one in the hypothesis itself?
Neth had supposed that the length in space-time that everyone agreed on obeyed the same rules as a length in space alone. The square of a length in space was the sum of the squares of its components in three different directions: garm-sard, shomal-junub, rarb-sharq. Neth had simply added in the square of the time component, after it had been multiplied by the scale factor that converted time to distance.
Why
As a compromise, what if they looked for geometries whose connection preserved a slightly different quantity than Neth had suggested: instead of summing the squares of all the components, what if they summed the spatial ones then subtracted the time?