Мы рассмотрели соотношение I + S = const с точки зрения второго закона термодинамики. Формулу Шеннона можно было бы назвать "физической информацией". Колмогоров [15] ввел понятие "алгоритмической информации". Алгоритмическую информацию можно рассматривать как меру алгоритмической хаотичности. Алгоритмическая информация практически совпадает с информацией по Шеннону.
Поясним эти понятия и их соотношение на двух примерах из живого мира. Предположим, что мы хотим определить радиочувствительность клеток популяции дрожжей. Мы ставим эксперимент: делаем суспензию клеток, облучаем ее, высеваем клетки на чашки Петри с питательной средой, затем определяем радиочувствительность клеток по числу выросших колоний. В ходе этого эксперимента мы заставляем геном клеток дрожжей работать по определенной схеме, одной единственной для каждой клетки. Тем самым мы выбираем и фиксируем одно единственное состояние из всех возможных. Этот эксперимент, который выявляет реакцию данных клеток на облучение, сводит все возможные состояния макромолекул, характеризующиеся некой максимальной энтропией, к одному единственному. Он может быть проведен за счет внешних ресурсов (питательной среды, источника облучения, работы лаборанта и т. д.). Второй пример – завоевание электората перед выборами. Хаотичные настроения толпы, характеризующиеся максимальной энтропией в обычное время, после агитации средствами массовой информации (накачивание внешней 7) перед выборами сменяются крайней политизацией. После выборов определяется количество проголосовавших за того или иного кандидата – поведение электората соответствует максимуму "информированности" о том или ином кандидате, какое-то количество неголосовавших составляет инертную константу.
Кратко резюмируя изложенное, можно заключить, что рождение новой информации всегда происходит в открытых системах, где параметры порядка становятся динамическими переменными.
В следующем параграфе мы рассмотрим системы с диссипацией избыточной внутренней энтропии.
Пусть будет некоторая открытая система, из которой постоянно удаляется шлак избыточной энтропии за счет роста энтропии внешней среды. Эта система является "диссипативной структурой". Пригожий с сотрудниками [16, 17] показали, что диссипативными структурами будут являться все разнообразные колебательные, пространственно организованные и пространственно-временные упорядоченные системы.
Для возникновения диссипативных структур необходимы следующие условия:
1. система должна быть открытой и находиться вдали от термодинамического равновесия;
2. в системе должны протекать различные каталитические и кросс-каталитические процессы, а также наблюдаться регуляция по типу обратной связи;
3. после некоторого критического значения параметров системы или какого-либо внешнего воздействия состояние системы становится неустойчивым и система может перейти в новое стационарное состояние, режим которого соответствует упорядоченному состоянию.
Под влиянием флуктуации отдельные элементы системы, взаимодействуя, обнаруживают свойства, характеризующие систему в целом, которые невозможно предсказать на основании свойств ее отдельных элементов. Такие структуры хорошо описываются нелинейными дифференциальными уравнениями. Примеры диссипативных структур можно взять из разных областей – физики, химии, биологии.
Одной из давно известных таких самоорганизующихся структур является реакция Белоусова-Жаботинского [18, 19]. Бросается в глаза большое число промежуточных соединений системы, которые соответствуют такому же числу дифференциальных уравнений. Для каждого из этих уравнений константа скорости должна быть получена из эксперимента. Один из этапов реакции является автокаталитическим.
В 1971 г. М. Эйген [20] сформулировал последовательную концепцию предбиологической молекулярной эволюции. Эйген распространил идеи дарвиновского отбора на популяции макромолекул в первичном бульоне. Далее он показал, что кооперирование молекул в "гиперциклы" приводит к компартментализации в виде отдельных клеточных единиц. Гиперцикл – это средство объединения самовоспроизводящихся единиц в новую устойчивую систему, способную к эволюции. Он построен из автокатализаторов, которые сочленены посредством циклического катализа, т. е. посредством еще одного автокатализа, наложенного на систему.
Дарвиновский отбор, являющийся предпосылкой для возникновения гиперциклов, на молекулярном уровне может иметь место в системах, обладающих следующими свойствами:
1. метаболизмом – система должна быть далеко от равновесия. Образование и разложение молекулярных видов должны быть независимы. Отбор должен действовать только на промежуточные состояния, которые образуются из высокоэнергетических предшественников и разрушаются в низкоэнергетические отходы. Система должна использовать освободившуюся энергию и вещества;
2. самовоспроизведением – способностью инструктировать свой собственный синтез;