Кажущаяся простота предложенного К. Шенноном решения проблемы измерения количества информации создавала видимость столь же легкого решения и других связанных с использованием термина "информации" проблем. Это и породило ту эйфорию, ту шумиху вокруг зарождающейся теории информации, характерную для пятидесятых годов, которую одним из первых заметил сам К. Шеннон и против которой было направлено его провидческое эссе "Бандвагон" [7].
Своей зрелости классическая теория информации достигла к середине пятидесятых годов. Главная причина столь быстрого "созревания" – простота и элегантность ее математического аппарата, опирающегося на теорию вероятности.
Отсутствие строгого определения понятия "информация" создавало впечатление, что объектом теории информации является нечто, имеющее мало общего с тем, что называют информацией в обыденной жизни. Действительно, если "в быту" доминирует содержательная, смысловая сторона информации, то здесь семантика информации вообще не рассматривалась. Представление об энтропии сообщений, развитое К. Шенноном и вскоре дополненное другими авторами (см. напр. [8-10]), как бы открывало возможность для отождествления понятия "информация" с понятиями "разнообразие" и "термодинамическая энтропия". Это порождало соблазн распространения классической теории информации далеко за пределы теории связи, в том числе на явления неживой и живой природы и даже на различные области искусства [11-13].
Два утверждения характерны для классической теории информации периода зрелости. Первое это постулирование "всюдности" информации. Второе утверждение – это то, что мерой количества информации, связанной с тем или иным объектом или явлением, может служить редкость его встречаемости или сложность его структуры. Эти утверждения можно назвать постулатами классической теории.
Указанные постулаты, а также следствия из них, наиболее полно были изложены Л. Бриллюэном в его книгах [5, 6]. Прежде всего, за универсальную меру количества информации Л. Бриллюэн принял величину I = klnP, где Р - вероятность осуществления некоторого события или "сложность устройства" какого-либо объекта, k - постоянная, величина которой зависит от выбора системы единиц измерения, a ln - натуральный логарифм. Далее Л. Бриллюэн обратил особое внимание на сходство указанной формулы с формулой Л. Больцмана для исчисления количества энтропии S = klnW, где W - число микросостояний некоторой системы, соответствующей ее макросостоянию, а k - "постоянная Больцмана", равная 1,4·10-16 эрг-град-1 или 3,3·10-24 энтропийных единиц (1 э.е. = 1 кал'град-1). Отсюда Л. Бриллюэн сделал вывод, что, приняв k = 3,3·10-24 э.е., мы получим возможность выражать количество информации в энтропийных единицах (1 бит = 2,3·10-24 э.е.), а величину энтропии, напротив, в единицах информационных (1 э.е. = 4,3·1023 бит). Затем он сделал последний шаг в построении "негэнтропииного принципа": сформулировал утверждение, согласно которому информация – это не что иное, как энтропия с обратным знаком, или негэнтропия.
Используя вероятностный подход, мы проведем следующие рассуждения. Пусть физическая система имеет W возможных состояний. Увеличение информации о ней, что было бы эквивалентно фиксации в определенном состоянии, приведет к уменьшению энтропии системы. Другими словами, (9)
Чем больше известно о системе, тем меньше ее энтропия. Важно еще одно обстоятельство. Утрачивая информацию, мы увеличиваем энтропию системы. Увеличивать информацию о системе мы можем, лишь увеличивая количество энтропии вне этой системы, во внешней среде, причем всегда
Формула Шеннона для определения количества информации (2) и формула Больцмана S = lnW для случая, когда вероятности отдельных состояний системы различаются (3), формально совпадают. Мы замечали, что они имеют совершенно различный смысл: информация (2) соответствует одному единственному состоянию системы из всех возможных W, мера этой информации I = lnW. Энтропия (3) соответствует возможности нахождения системы с некоторой вероятностью I/W в каждом из доступных состояний. Информация (2) и энтропия (3) оказались равны между собой, потому, что I соответствует максимальной информации одного единственного состояния, а 5 определена по множеству всех состояний.
В замкнутой системе (возьмем, например, текст) увеличение энтропии приводит к "забыванию" информации, и мы приходим к соотношению I + S = const. В соответствии со вторым законом термодинамики энтропия замкнутой системы не может убывать со временем. Поэтому в замкнутых системах соотношение (9) может сдвигаться только к забыванию информации. Это означает, что рождение новой информации требует выхода за пределы изолированной системы.