Читаем Инфраструктуры открытых ключей полностью

Пример 9.2. Рассмотрим дерево аннулирования сертификатов, представленное на рис. 9.3 [44]. Крайние слева узлы представляют хэш-коды математических выражений, которые известны субъекту, генерирующему дерево. Как показано стрелками, каждая смежная пара узлов затем объединяется в один узел. Если пара существует, два узла объединяются и хэшируются. Результат хэширования - это значение нового сформированного узла справа. Если пары нет (когда на данном уровне имеется нечетное количество узлов), то непарный узел просто перемещается на следующий уровень дерева (как показано узлами N2,2 и N3,1 на рис. 9.3). Этот процесс повторяется до тех пор, пока не будет вычислен финальный "корень" (самый правый узел на рис. 9.3). Значение хэш-кода последнего узла в целях обеспечения целостности и аутентичности заверяется цифровой подписью.

Пример дерева аннулирования сертификатов

Рис. 9.3.  Пример дерева аннулирования сертификатов

Чтобы определить, был ли сертификат аннулирован, доверяющая сторона проверяет, превышает ли серийный номер сертификата нижнюю границу ближайшего по значению нестрогого неравенства из последовательности выражений для данного УЦ. Если это так, то сертификат не был аннулирован, если нет - то был. Чтобы убедиться в том, что целостность не была нарушена, доверяющая сторона должна реконструировать корневой узел и сравнить его хэш-код со значением заверенного цифровой подписью хэш-кода корневого узла. Для этого субъект, сгенерировавший дерево, предоставляет доверяющей стороне информацию о выражении, ближайшем к серийному номеру проверяемого сертификата, значения хэш-кодов всех поддерживающих узлов и заверенный цифровой подписью хэш-код корневого узла. Генерация ДАС может выполняться уполномоченным субъектом внутри рассматриваемого множества PKI-сообществ или доверенной третьей стороной. Главное преимущество деревьев ДАС заключается в эффективном представлении большого объема информации об аннулировании. Фактически объем ДАС составляет log2N, где N - число аннулированных сертификатов.

<p>Механизмы онлайновых запросов</p>

Обсудим механизмы онлайновых запросов для поиска информации об аннулировании сертификатов. Онлайновые механизмы в некотором отношении отличаются от механизмов периодической публикации - в основном тем, что онлайновые механизмы обычно требуют, чтобы доверяющая сторона была доступна (находилась на связи) в любой момент, когда бы ни решался вопрос о статусе сертификата. Механизмы периодической публикации лучше подходят для автономной работы, потому что информация об аннулировании может размещаться в кэш-памяти. Кэширование информации, получаемой по онлайновым запросам, не всегда согласуется с требованием гарантированного предоставления доверяющей стороне в любой момент самой "свежей" информации.

Разработкой онлайновых протоколов статуса сертификата занималась рабочая группа IETF PKIX. В июне 1999 года онлайновый протокол статуса сертификата Online Certificate Status Protocol ( OCSP ) был предложен в качестве стандарта RFC 2560 [155]. Поскольку это был первый шаг в разработке протоколов такого рода, функциональность OCSP была намеренно ограничена его разработчиками.

<p>Онлайновый протокол статуса сертификата</p>

Онлайновый протокол статуса сертификата OCSP - относительно простой протокол (типа "запрос-ответ") для получения информации об аннулировании от доверенного субъекта, называемого OCSP-респондером . OCSP-запрос состоит из номера версии протокола, типа запроса на обслуживание и одного или нескольких идентификаторов сертификатов. Идентификатор сертификата включает хэш-коды отличительного имени и открытого ключа издателя сертификата, а также серийный номер сертификата. В запросе иногда могут присутствовать необязательные дополнения.

OCSP-ответ также достаточно прост и состоит из идентификатора сертификата, статуса сертификата ("нормальный", "аннулированный" или "неизвестный") и срока действия ответа, связанного с идентификатором каждого указанного в исходном запросе сертификата. Если сертификат имеет статус аннулированного, то отображается время аннулирования и может быть указана причина аннулирования (необязательно). Срок действия задается интервалом от текущего обновления (параметр This Update ) до следующего обновления (параметр Next Update ). Ответ может содержать необязательные дополнения, а также код ошибки, если обработка запроса не была завершена корректно.

Перейти на страницу:

Все книги серии Основы информационных технологий

Похожие книги

«Ага!» и его секреты
«Ага!» и его секреты

Вы бы не хотели, скажем, изобрести что-то или открыть новый физический закон, а то и сочинить поэму или написать концерт для фортепьяно с оркестром?Не плохо бы, верно? Только как это сделать? Говорят, Шиллер уверял, будто сочинять стихи ему помогает запах гнилых яблок. И потому, принимаясь за работу, всегда клал их в ящик письменного стола. А физик Гельмгольц поступал иначе. Разложив все мысленно по полочкам, он дожидался вечера и медленно поднимался на гору лесной дорогой. Во время такой прогулки приходило нужное решение.Словом, сколько умов, столько способов заставить мозг работать творчески. А нет ли каких-то строго научных правил? Одинаковы ли они для математиков, биологов, инженеров, поэтов, художников? Да и существуют ли такие приемы, или каждый должен полагаться на свои природные способности и капризы вдохновения?Это тем более важно знать, что теперь появились «электронные ньютоны» — машины, специальность которых делать открытия. Но их еще нужно учить.Решающее слово здесь принадлежит биологам: именно они должны давать рецепты инженерам. А биологи и сами знают о том, как мы думаем, далеко не все. Им предстоит еще активнее исследовать лабораторию нашего мышления.О том, как ведутся эти исследования, как постепенно «умнеют» машины, как они учатся и как их учат, — словом, о новой науке эвристике рассказывает эта книга.

Елена Викторовна Сапарина

Зарубежная компьютерная, околокомпьютерная литература
Компьютерная обработка звука
Компьютерная обработка звука

Возможности современных программ и компьютеров, а также их относительная доступность по цене позволяют выполнять серьезную работу по обработке звукового материала – в том числе и профессиональную – не только на специализированной звуковой рабочей станции в студии звукозаписи, но и на персональном компьютере, в домашней студии.В книге, которую вы держите в руках, рассмотрены основные методы обработки звука при помощи персонального компьютера, совместимого с IBM PC. Приводится подробное описание их использования на примере наиболее распространенных в России программ обработки звука, работающих под управлением операционной системы Microsoft Windows: Sound Forge, WaveLab, SAW Plus 32, Samplitude 2496, Cakewalk Pro Audio, а также программы ведения нотной записи Finale 98.

Александр Петрович Загуменнов

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT