Читаем Инфраструктуры открытых ключей полностью

Каждый тип архитектуры обладает своими достоинствами и недостатками. Простые типы, например, одиночный УЦ и простой список доверия УЦ, пригодны для развертывания небольшой PKI и являются основой других типов архитектуры. Для решения проблем безопасности крупной организации (большой компании или правительственного агентства) требуется более сложная архитектура, например, иерархическая или сетевая, связывающая отношениями доверия многие удостоверяющие центры. Часто списки доверия, иерархическая и сетевая инфраструктуры открытых ключей комбинируются для создания гибридной PKI. Можно выделить следующие типы гибридной архитектуры: расширенные списки доверия ; кросс-сертифицированные корпоративные инфраструктуры и мостовые PKI. Для каждого типа архитектуры характерны свои отношения доверия. В зависимости от своих особенностей, каждый тип архитектуры используется в определенной среде.

Фундаментальной конструкцией PKI являются пути сертификации. Путем сертификации называется последовательность сертификатов, в которой издатель первого сертификата является пунктом доверия, а субъект последнего сертификата - конечным субъектом. Последний элемент последовательности - сертификат конечного субъекта - подлежит валидации. Сертификат конечного субъекта, который содержит идентификационные данные и открытый ключ владельца сертификата, может использоваться для проверки цифровой подписи или создания секретного ключа. Приложения, базирующиеся на PKI, прежде чем использовать открытый ключ субъекта для выполнения криптографической операции, должны построить и проверить путь сертификации, связывающий пункт доверия PKI и сертификат этого субъекта. Приложение не может доверять открытому ключу сертификата, пока не выполнено построение пути сертификации от данного сертификата до одного из удостоверяющих центров, признаваемых пунктами доверия PKI. Сложность этого шага зависит от сложности архитектуры PKI.

Обработка пути сертификации заключается в нахождении пути, или цепочки, сертификатов между данным целевым сертификатом и доверенным ключом и проверке валидности каждого сертификата в этом пути. Под доверенным ключом понимается ключ пункта доверия субъекта, выполняющего построение и валидацию пути . Иными словами, окончательная цель одного пользователя заключается в проверке того, можно ли доверять открытому ключу в сертификате другого пользователя. Проверяемый сертификат (и, следовательно, соответствующий открытый ключ) является надежным, если обнаруживается, что каждый сертификат (и соответствующий открытый ключ) построенного пути является надежным.

Обработка пути сертификации состоит из двух этапов:

1построение пути, которое заключается в агрегировании всех сертификатов, необходимых для формирования полного пути;

2валидация пути, которая включает последовательную проверку каждого сертификата пути и определение надежности соответствующего открытого ключа.

Построение и валидация пути сертификации зависят от топологии PKI, часто они выполняются как два независимых шага, но могут быть и объединены.

<p>Построение пути сертификации</p>

Построение пути может быть очень сложной и трудоемкой задачей, особенно если требуется обработка большого количества сертификатов. Это связано с трудностями поиска сертификата субъекта, который подписал данный сертификат, если субъект находится вне данной локальной среды. Базовое допущение при построении пути заключается в том, что пользователь может найти или каким-то образом получить все сертификаты, необходимые ему для проверки, и сконструировать путь.

Пример построения пути

Рис. 10.1.  Пример построения пути

Пример 10.1. Пусть пользователь А пытается проверить надежность сертификата пользователя В, с которым он желает взаимодействовать [44]. Предположим, что пользователь В сертифицирован УЦ3, УЦ3 кросс-сертифицирован с УЦ2 (наряду с другими удостоверяющими центрами), УЦ2 кросс-сертифицирован с УЦ1 (наряду с другими), а пользователь А владеет доверенной копией открытого ключа УЦ1 (см. рис. 10.1).

Перейти на страницу:

Все книги серии Основы информационных технологий

Похожие книги

«Ага!» и его секреты
«Ага!» и его секреты

Вы бы не хотели, скажем, изобрести что-то или открыть новый физический закон, а то и сочинить поэму или написать концерт для фортепьяно с оркестром?Не плохо бы, верно? Только как это сделать? Говорят, Шиллер уверял, будто сочинять стихи ему помогает запах гнилых яблок. И потому, принимаясь за работу, всегда клал их в ящик письменного стола. А физик Гельмгольц поступал иначе. Разложив все мысленно по полочкам, он дожидался вечера и медленно поднимался на гору лесной дорогой. Во время такой прогулки приходило нужное решение.Словом, сколько умов, столько способов заставить мозг работать творчески. А нет ли каких-то строго научных правил? Одинаковы ли они для математиков, биологов, инженеров, поэтов, художников? Да и существуют ли такие приемы, или каждый должен полагаться на свои природные способности и капризы вдохновения?Это тем более важно знать, что теперь появились «электронные ньютоны» — машины, специальность которых делать открытия. Но их еще нужно учить.Решающее слово здесь принадлежит биологам: именно они должны давать рецепты инженерам. А биологи и сами знают о том, как мы думаем, далеко не все. Им предстоит еще активнее исследовать лабораторию нашего мышления.О том, как ведутся эти исследования, как постепенно «умнеют» машины, как они учатся и как их учат, — словом, о новой науке эвристике рассказывает эта книга.

Елена Викторовна Сапарина

Зарубежная компьютерная, околокомпьютерная литература
Компьютерная обработка звука
Компьютерная обработка звука

Возможности современных программ и компьютеров, а также их относительная доступность по цене позволяют выполнять серьезную работу по обработке звукового материала – в том числе и профессиональную – не только на специализированной звуковой рабочей станции в студии звукозаписи, но и на персональном компьютере, в домашней студии.В книге, которую вы держите в руках, рассмотрены основные методы обработки звука при помощи персонального компьютера, совместимого с IBM PC. Приводится подробное описание их использования на примере наиболее распространенных в России программ обработки звука, работающих под управлением операционной системы Microsoft Windows: Sound Forge, WaveLab, SAW Plus 32, Samplitude 2496, Cakewalk Pro Audio, а также программы ведения нотной записи Finale 98.

Александр Петрович Загуменнов

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT