Читаем Инфраструктуры открытых ключей полностью

В сетевой архитектуре сертификаты конечных субъектов выпускаются непосредственно их пунктами доверия. Субъект, строящий путь, доверяет своему УЦ, который может не совпадать с пунктом доверия того конечного субъекта, к которому строится путь. Более того, для этого УЦ могут быть выпущены сертификаты другими удостоверяющими центрами из разных сегментов сети. По этой причине построение пути начинается в пункте доверия и продолжается в направлении издателя сертификата конечного субъекта. Идентификатор ключа УЦ в сертификате сравнивается с идентификатором ключа субъекта сертификатов удостоверяющих центров, включая сертификат искомого УЦ. Так как дополнения Authority Key Identifier (идентификатор ключа УЦ) недостаточно для построения пути, следует использовать другие атрибуты как эвристические. Это могут быть имена или любые другие атрибуты, помогающие выбрать, с какого из возможных сертификатов начинать построение пути. Если выбранный сертификат не ведет к завершенному пути сертификации, то просто пробуют следующий за ним сертификат и т.д. [84].

В силу того, что сеть содержит много двусторонних связей между удостоверяющими центрами, между любым конечным субъектом и определенным пунктом доверия обычно существует более одного пути сертификации. По этой причине валидация пути сертификации часто выполняется одновременно с его построением, частью этого процесса является удаление неверных ветвей. Но даже при этом обычно существует несколько валидных путей сертификации, которые могут содержать петли. Петля образуется тогда, когда в пути сертификации встречается один и тот же сертификат более одного раза.

На рис.10.6 показаны пути сертификации, которые можно построить от пользователя А к пользователям B, C и D. Для пользователей C и D показан не один путь. Каждый путь является валидным, но некоторые пути длиннее других. Нахождение наиболее короткого пути не требуется, решение этой задачи значительно усложняет процесс. Обычно используется первый найденный валидный путь. С иллюстративной целью третий путь сертификации для пользователя D имеет петлю.

<p>Гибридная архитектура PKI</p>

Гибридные PKI создаются с целью установить защищенные коммуникации между несколькими корпоративными PKI или сообществами пользователей, для этого комбинируются разные типы архитектуры: списки доверия УЦ, иерархическая и сетевая инфраструктуры открытых ключей [69]. Подобные гибридные PKI позволяют организациям создавать архитектуру с учетом их специфики и решать технические, политические проблемы и проблемы масштабирования.

Пример 10.4. Рассмотрим сценарий, проиллюстрированный рис. 10.7 [70]. Три компании сотрудничают друг с другом, но используют корпоративные PKI разных типов. Пользователи А и В получили свои сертификаты от головного УЦ компании "Альфа". Пользователь С получил свой сертификат от УЦ подразделения 1 в иерархической PKI компании "Бета". Пользователь D получил сертификат от УЦ подразделения 3 в сетевой PKI компании "Гамма". Пользователь А может использовать один из трех вариантов гибридной архитектуры PKI для установления защищенных коммуникаций с пользователями C и D.

Три корпоративные PKI

Рис. 10.7.  Три корпоративные PKI

Первый вариант заключается в расширении списка доверия для поддержки путей сертификации, длины которых больше единицы. Второй вариант архитектуры предполагает установление удостоверяющими центрами и корпоративными PKI одноранговых связей для поддержки защищенных коммуникаций между их пользователями. Третий вариант архитектуры вводит мостовой УЦ как унифицирующий компонент, специально спроектированный для связывания разнородных PKI.

<p>Архитектура расширенного списка доверия</p>

Архитектура расширенного списка доверия корректирует недостатки простого списка доверия. Каждый пункт доверия в списке идентифицирует PKI, которой доверяет данный пользователь. Эта инфраструктура может быть одиночным УЦ, иерархией или сетью. Пользователь доверяет путям сертификации, которые начинаются с сертификата, выданного любым УЦ из списка доверия.

Перейти на страницу:

Все книги серии Основы информационных технологий

Похожие книги

«Ага!» и его секреты
«Ага!» и его секреты

Вы бы не хотели, скажем, изобрести что-то или открыть новый физический закон, а то и сочинить поэму или написать концерт для фортепьяно с оркестром?Не плохо бы, верно? Только как это сделать? Говорят, Шиллер уверял, будто сочинять стихи ему помогает запах гнилых яблок. И потому, принимаясь за работу, всегда клал их в ящик письменного стола. А физик Гельмгольц поступал иначе. Разложив все мысленно по полочкам, он дожидался вечера и медленно поднимался на гору лесной дорогой. Во время такой прогулки приходило нужное решение.Словом, сколько умов, столько способов заставить мозг работать творчески. А нет ли каких-то строго научных правил? Одинаковы ли они для математиков, биологов, инженеров, поэтов, художников? Да и существуют ли такие приемы, или каждый должен полагаться на свои природные способности и капризы вдохновения?Это тем более важно знать, что теперь появились «электронные ньютоны» — машины, специальность которых делать открытия. Но их еще нужно учить.Решающее слово здесь принадлежит биологам: именно они должны давать рецепты инженерам. А биологи и сами знают о том, как мы думаем, далеко не все. Им предстоит еще активнее исследовать лабораторию нашего мышления.О том, как ведутся эти исследования, как постепенно «умнеют» машины, как они учатся и как их учат, — словом, о новой науке эвристике рассказывает эта книга.

Елена Викторовна Сапарина

Зарубежная компьютерная, околокомпьютерная литература
Компьютерная обработка звука
Компьютерная обработка звука

Возможности современных программ и компьютеров, а также их относительная доступность по цене позволяют выполнять серьезную работу по обработке звукового материала – в том числе и профессиональную – не только на специализированной звуковой рабочей станции в студии звукозаписи, но и на персональном компьютере, в домашней студии.В книге, которую вы держите в руках, рассмотрены основные методы обработки звука при помощи персонального компьютера, совместимого с IBM PC. Приводится подробное описание их использования на примере наиболее распространенных в России программ обработки звука, работающих под управлением операционной системы Microsoft Windows: Sound Forge, WaveLab, SAW Plus 32, Samplitude 2496, Cakewalk Pro Audio, а также программы ведения нотной записи Finale 98.

Александр Петрович Загуменнов

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT