С помощью какой-нибудь простой в использовании программы – хотя бы MS Access – я могу очень быстро развенчать глупую теорию. Например, у одного сотрудника возникла мысль, что мы должны требовать возвращения товаров на склад на основе минимальных, а не максимальных уровней запасов. Я смог проверить эту идею за две минуты и определил, что результатом будет всего $4000 при запланированной прибыли в $400 000. Ради этого не стоит терять неделю, перепечатывая и рассылая по магазинам указания, которые они должны выполнять.
Мне нравится применять сценарный анализ. Я спрашиваю: «В каком случае это было бы оправданно?» Например, сколько потенциальных клиентов должен принести нам веб-сайт, чтобы оправдать свое существование? Если ответ – «десять миллионов миллиардов», я сомневаюсь, что столько у нас получится. Если ответ – «пятьдесят», я скажу: «Ну ладно». Если анализ делается на основе неоправданных предположений, то можно переходить к следующей идее.
У меня был случай, когда один аналитик обработал кучу цифр из множества разных источников, пришел ко мне и сказал: «Вот ответ». Я взглянул на цифры и сказал, что этот ответ просто не может быть правильным; в противном случае мир выглядел бы совсем иначе. Поэтому, анализируя данные, обязательно сделайте мысленный шаг назад и проведите контрольную проверку.
Я всегда спрашиваю: «Насколько должен измениться наш нынешний ответ, чтобы мы изменили свой вывод?» Я решительно настаиваю на проверке предположений, а для этого добиваюсь очень четкого их обоснования. Затем я сосредоточиваю анализ на этих обоснованиях. Это значительно улучшило нашу стратегию приобретений; результаты говорят сами за себя.
Хотя не существует единственного наилучшего способа проведения контрольной проверки, вы можете предотвратить многие проблемы, если перед окончательной презентацией зададите себе несколько критических вопросов.
Помните, что возможности анализа ограниченны. Анализ играет жизненно важную роль в процессе решения проблем в McKinsey, но в конечном итоге его возможности ограниченны. Необходимо сделать некоторые заключения на его основе, ведь данные не говорят сами за себя. Вы достигли той точки в нашей модели консалтинга, где ведущая роль переходит от данных к интуиции. Это то самое распутье, о котором говорил Йоги Берра, и вам нужно туда повернуть.
Но ограничения анализа – не причина, чтобы обходиться без него. Избегайте того, что один бывший сотрудник McKinsey назвал установкой «готовься, огонь, целься». Даже если у вас хорошие навыки принятия решений и надежная интуиция, будет нелишне подкрепить ваше решение продуманным анализом. Рассказывает Билл Росс: