Читаем Интегральная Фотоника полностью

Принцип работы CPO отличается от традиционной оптики, где оптические модули располагаются отдельно от чипов на фотонических модулях. Вместо этого CPO интегрирует оптические функции прямо на самой плате или кристаллическом чипе, что делает его более эффективным и экономичным решением для коротких расстояний передачи данных внутри устройства.


Кроме основных принципов работы, можно дополнить описание устройств для связи внутри платы (CPO) следующими деталями:


Интеграция и упаковка: CPO-модули обычно интегрируются непосредственно на поверхности чипа или кристаллического модуля электронного устройства. Это может быть достигнуто с использованием различных техник микроэлектроники и оптической фотолитографии. Подходящая система связи может быть разработана таким образом, чтобы соответствовать требованиям конкретной аппаратной платформы.

Пассивное параллельное соединение: Одной из ключевых особенностей CPO является возможность создания массивных параллельных соединений, то есть одновременная передача нескольких оптических каналов данных между активными элементами на плате. Это значительно повышает пропускную способность и эффективность передачи данных внутри системы.

Управление сигналами: Для эффективного функционирования CPO требуются методы управления и контроля оптических сигналов. Это включает в себя мониторинг и регулировку мощности оптического сигнала, компенсацию потерь на расстоянии передачи и управление модуляцией для достижения требуемой скорости передачи данных.

Охлаждение: При высоких скоростях передачи данных может возникать проблема нагрева CPO-модулей. Для обеспечения надежной работы необходимы эффективные методы охлаждения, которые могут быть интегрированы в конструкцию платы или чипа.

Стандартизация: В настоящее время активно разрабатываются стандарты для CPO, чтобы обеспечить интероперабельность и совместимость различных производителей. Это поможет ускорить внедрение технологии и расширить ее применение в широком диапазоне приложений.


Устройства для связи внутри платы (CPO) представляют перспективную технологию для повышения производительности систем связи на коротких расстояниях. Их комбинация с другими новаторскими решениями, такими как фотонные кристаллы и метаматериалы, может привести к созданию более эффективных и компактных систем связи в будущем.


Коммутационная матрица (или коммутатор) – это устройство, используемое в телекоммуникационных и сетевых системах для управления потоками данных или сигналов между различными портами или каналами.

Принцип работы коммутационной матрицы основан на перенаправлении данных от одного порта к другому. Когда данные поступают на входную сторону коммутатора, он анализирует адрес назначения и принимает решение о передаче этих данных на соответствующий выходной порт. Для этого коммутационная матрица обычно имеет таблицу маршрутизации, которая содержит информацию о связях между входными и выходными портами.


Существуют разные типы коммутационных матриц, такие как:

Кросс-бар: Это самый распространенный тип коммутационной матрицы. Он состоит из двумерного массива переключателей (как правило, электромеханических или полупроводниковых), где каждый переключатель соединяет определенный входной порт с определенным выходным портом.

Матрица временного перемещения: Этот тип коммутационной матрицы используется в системах с временными мультиплексорами. Он основан на использовании временного разделения каналов, где каждый входной порт имеет свой временной слот для передачи данных на выходные порты.

Матрица пространственного перемещения: Этот тип коммутационной матрицы используется в оптических сетях и основан на использовании пространственного разделения каналов. Он позволяет одновременно обрабатывать несколько оптических потоков данных, например, при помощи чередующихся лучей или фазовых модуляторов.


Коммутационные матрицы играют важную роль в построении эффективных коммуникационных систем. Они обеспечивают быструю и надежную пересылку данных между устройствами или сегментами сети, что является ключевым элементом для достижения высокой скорости передачи данных и минимальных задержек при обмене информацией.


Кросс-бар на базе интегрированного фотонного чипа представляет собой коммутационную матрицу, где переключение оптических сигналов осуществляется с использованием компонентов фотоники на одном единственном кремниевом чипе.

Конструкция такого кросс-бара включает несколько ключевых элементов. Во-первых, на чипе присутствуют оптические волноводы, которые служат для направления световых сигналов от входных портов к выходным портам. Эти волноводы могут быть реализованы как полосковые (strip) или облачные (slot) структуры.

Перейти на страницу:

Похожие книги

100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука
Англия Тюдоров. Полная история эпохи от Генриха VII до Елизаветы I
Англия Тюдоров. Полная история эпохи от Генриха VII до Елизаветы I

В книге, впервые изданной в Великобритании в 1988 году и с тех пор разошедшейся тиражом более четверти миллиона экземпляров и ставшей настоящей классикой, представлена Англия эпохи Тюдоров. Изложение охватывает период от последнего этапа Войны Алой и Белой розы (1455–1485) и прихода к власти Генриха VII, основателя династии, до смерти Елизаветы I в 1603 году. Глубокий анализ описываемых событий в политическом, социальном и религиознокультурном аспектах позволил не только проследить за реформированием государственной власти и церкви при Генрихе VII, Генрихе VIII, Эдуарде VI, Марии I и Елизавете I, но и раскрыть характеры монархов и других политических деятелей той эпохи. Авторитетное и тщательно проработанное исследование экономики, устройства общества и политической культуры Тюдоровской эпохи дополнено цветными иллюстрациями.«Я стремился написать о периоде английской истории с 1460 года до кончины Елизаветы I доступно для всех, а также наиболее полно и на современном уровне обобщить огромное количество работ по истории эпохи Тюдоров… Я твердо убежден, что для того, чтобы должным образом осознать значение периодов Генриха VIII и Елизаветы, эпоху Тюдоров и институты того времени необходимо рассматривать в совокупности». (Джон Гай)В формате PDF A4 сохранён издательский дизайн.

Джон Гай

История / Научно-популярная литература / Образование и наука
История зеркал. От отражения в воде до космической оптики
История зеркал. От отражения в воде до космической оптики

Зеркало… Это целая Вселенная! И хотя этот предмет присутствует в каждом доме, он окружен курьезами, загадками и мистикой. Человека влечет к зеркалам с момента их появления, и объяснить природу этой страсти невозможно. Зеркало – один из самых энергетически сильных предметов. Энергия, которую хранит в себе зеркало, способна изменить нашу жизнь как в лучшую, так и в худшую сторону. Но, к счастью, человек может управлять своим самым уникальным и удивительным изобретением. Мы расскажем, каково его происхождение, каким образом возникали народные приметы, связанные с этим изделием, и насколько расширилась сфера использования зеркал в нашей жизни. Сегодня существование человека без зеркал не представляется возможным, они нашли широкое применение в различных отраслях науки и техники. Зеркальное стекло нашло свое применение в оптических приборах: телескопах, лазерах, спектрометрах, зеркальных фотоаппаратах, перископах. Испокон веков вогнутые зеркала используют в медицинских инструментах. При помощи зеркальной терапии борются с фантомными болями. Где и когда появилось первое зеркало, точно неизвестно. Но мы знаем, что древний миф о Персее повествует о том, что уже тогда щит древнего героя позволил обратить в камень смертоносную горгону Медузу… Итак: Свет мой, зеркальце! Скажи да всю правду доложи… В формате PDF A4 сохранён издательский дизайн.

Алиса Шпигель

Астрология и хиромантия / Научно-популярная литература / Образование и наука