Читаем Интегральная Фотоника полностью

Надежность: Из-за сложности конструкции и особенностей работы фотонных микросхем, особое внимание следует обращать на надежность устройства. Они должны быть спроектированы и изготовлены с учетом возможных факторов, таких как тепловые расширения, вибрации или электростатические разряды.

Совместимость с другими элементами: Фотонные микросхемы должны быть совместимы с другими компонентами оптической системы, такими как светоисточники, детекторы и волоконные соединения. Это позволяет создавать сложные оптические системы с высокой производительностью.


Рассмотрим типовые блоки фотонных микросхем – основные строительные единицы, которые используются для создания сложных оптических систем. Каждый блок выполняет определенную функцию и играет важную роль в обеспечении эффективной передачи светового сигнала.


Оптический транзистор

устройство, которое позволяет контролировать пропускание света через оптический канал с помощью внешнего электрического сигнала. Конструкция оптического транзистора обычно состоит из трех основных компонентов: источника света, фоточувствительного элемента и регулирующего элемента.

Источник света может быть представлен лазером или светодиодом, который генерирует оптический сигнал для передачи данных или информации.

Фоточувствительный элемент – фотоприемник, который преобразует падающий на него световой сигнал в соответствующий электрический сигнал. Он состоит из полупроводниковых материалов, таких как кремний или германий, которые способны генерировать электричество при воздействии на них фотонов.

Регулирующий элемент является ключевым компонентом оптического транзистора и позволяет управлять прохождением светового потока. Этим регулирующим элементом может служить полупроводниковый переключатель или модулятор, который изменяет оптические свойства материала под воздействием электрического сигнала. Например, это может быть полупроводниковая структура с эффектом Эйнштейна-Парселла (ЭП), когда приложение электрического поля меняет показатель преломления и/или поглощение света.

Вместе эти компоненты образуют конструкцию оптического транзистора, который способен контролировать прохождение световых сигналов в зависимости от внешнего электрического сигнала. Такие устройства широко используются в фотонике и оптической коммуникации для управления световыми потоками и реализации функций аналогичных традиционным электронным транзисторам.

Оптический транзистор без использования электричества – это устройство, которое позволяет контролировать пропускание света через оптический канал с помощью других физических явлений. Вместо использования электрического сигнала для регулирования прохождения световых сигналов, такой транзистор может основываться на оптическом или механическом воздействии.

Например, одним из возможных устройств является оптический переключатель на основе эффекта Фарадея-Керра. В этом случае используется материал со свойствами изменения показателя преломления под воздействием магнитного поля. Различные компоненты такого устройства включают источник света, модулятор (обычно состоящий из материала с высоким коэффициентом Керра), и детектор для обнаружения проходящего светового потока.

Подачей магнитного поля к модулятору достигается изменение его показателя преломления. Это создает разницу в скорости распространения светодневной замедленной группы (group velocity) и, следовательно, изменяет фазу света. Устройство может использовать интерференцию для контроля прохождения оптического сигнала через модулятор.

Таким образом, в отсутствие электричества устройства на основе эффекта Фарадея-Керра позволяют регулировать пропускание световых сигналов посредством магнитного поля. Это предоставляет альтернативный подход к созданию оптических транзисторов без необходимости использования электрических сигналов для управления светом.


Оптический транзистор позволяет управлять прохождением света через оптический канал с использованием различных физических явлений. Существует несколько типов оптических транзисторов, включая следующие:


• Фотонный транзистор: Этот тип транзистора основан на эффекте фотопроводимости и используется для контроля пропускания света через материал. Он состоит из полупроводникового материала с двумя p-n переходами. При поглощении фотона в активном области создается пара электрон-дырка, что меняет проводимость материала и регулирует прохождение света.

• Акустооптический транзистор: В этом случае изменение интенсивности светового потока достигается за счет модуляции показателя преломления под действием акустической волны. Устройство состоит из кристалла или волновода, где акустическая волна создает периодическую модуляцию показателя преломления, что изменяет характер распределения светодневной замедленной группы и, следовательно, управляет пропусканием светового сигнала.

Перейти на страницу:

Похожие книги

100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука
Англия Тюдоров. Полная история эпохи от Генриха VII до Елизаветы I
Англия Тюдоров. Полная история эпохи от Генриха VII до Елизаветы I

В книге, впервые изданной в Великобритании в 1988 году и с тех пор разошедшейся тиражом более четверти миллиона экземпляров и ставшей настоящей классикой, представлена Англия эпохи Тюдоров. Изложение охватывает период от последнего этапа Войны Алой и Белой розы (1455–1485) и прихода к власти Генриха VII, основателя династии, до смерти Елизаветы I в 1603 году. Глубокий анализ описываемых событий в политическом, социальном и религиознокультурном аспектах позволил не только проследить за реформированием государственной власти и церкви при Генрихе VII, Генрихе VIII, Эдуарде VI, Марии I и Елизавете I, но и раскрыть характеры монархов и других политических деятелей той эпохи. Авторитетное и тщательно проработанное исследование экономики, устройства общества и политической культуры Тюдоровской эпохи дополнено цветными иллюстрациями.«Я стремился написать о периоде английской истории с 1460 года до кончины Елизаветы I доступно для всех, а также наиболее полно и на современном уровне обобщить огромное количество работ по истории эпохи Тюдоров… Я твердо убежден, что для того, чтобы должным образом осознать значение периодов Генриха VIII и Елизаветы, эпоху Тюдоров и институты того времени необходимо рассматривать в совокупности». (Джон Гай)В формате PDF A4 сохранён издательский дизайн.

Джон Гай

История / Научно-популярная литература / Образование и наука
История зеркал. От отражения в воде до космической оптики
История зеркал. От отражения в воде до космической оптики

Зеркало… Это целая Вселенная! И хотя этот предмет присутствует в каждом доме, он окружен курьезами, загадками и мистикой. Человека влечет к зеркалам с момента их появления, и объяснить природу этой страсти невозможно. Зеркало – один из самых энергетически сильных предметов. Энергия, которую хранит в себе зеркало, способна изменить нашу жизнь как в лучшую, так и в худшую сторону. Но, к счастью, человек может управлять своим самым уникальным и удивительным изобретением. Мы расскажем, каково его происхождение, каким образом возникали народные приметы, связанные с этим изделием, и насколько расширилась сфера использования зеркал в нашей жизни. Сегодня существование человека без зеркал не представляется возможным, они нашли широкое применение в различных отраслях науки и техники. Зеркальное стекло нашло свое применение в оптических приборах: телескопах, лазерах, спектрометрах, зеркальных фотоаппаратах, перископах. Испокон веков вогнутые зеркала используют в медицинских инструментах. При помощи зеркальной терапии борются с фантомными болями. Где и когда появилось первое зеркало, точно неизвестно. Но мы знаем, что древний миф о Персее повествует о том, что уже тогда щит древнего героя позволил обратить в камень смертоносную горгону Медузу… Итак: Свет мой, зеркальце! Скажи да всю правду доложи… В формате PDF A4 сохранён издательский дизайн.

Алиса Шпигель

Астрология и хиромантия / Научно-популярная литература / Образование и наука