Читаем Интегральная Фотоника полностью

– Скорость и пропускная способность: обсуждаемые системы обладают высокой скоростью передачи данных и большей пропускной способностью по сравнению с полупроводниковыми устройствами. Это позволяет создавать системы с потенциалом обрабатывать бОльшие объемы данных быстрее и эффективнее.

– Высокоинтегрированные фотонные интегральные схемы потребляют меньше энергии по сравнению с полупроводниковыми устройствами. Это позволяет увеличить эффективность энергопотребления и продлить время работы устройства.

Фотонные системы обладают высокой устойчивостью к помехам, таким как электромагнитные воздействия, по сравнению с полупроводниковыми устройствами.


Одним из ключевых аспектов развития интегральной фотоники является разработка и использование базовых элементов, обеспечивающих возможность интеграции различных функциональных компонентов на одном чипе. Мы рассмотрим современные технологии, находящиеся в фокусе данной книги, которые позволяют достичь высокой эффективности интегрированных фотонных устройств. Эти технологии включают в себя использование волноводов, микрорезонаторов, модулирующих элементов и фотодетекторов, основанных на различных материалах и структурах. Исследования в области базовых элементов интегральной фотоники открывают новые перспективы для создания компактных и энергоэффективных оптических систем, способных решать широкий спектр задач в сферах связи, информационных технологий и медицины.

С развитием технологий и появлением новых потребностей, стало очевидно, что для достижения еще большей гибкости и эффективности требуется переход к программируемой интегральной фотонике. Это новое направление исследований и разработок позволяет создавать оптические системы, которые можно программировать и перестраивать на лету, открывая новые возможности для коммуникаций, вычислений и сенсорики. Программируемая интегральная фотоника представляет собой следующий этап в эволюции оптических технологий, который обещает революционизировать наши возможности в области передачи информации и обработки данных.

В данной книге мы отдельно затронем концепцию программируемой интегрированной фотоники. Это технология позволяет создавать интегрированные фотонные схемы, которые могут быть перепрограммированы для выполнения различных задач. Это означает, что оптические компоненты могут быть настроены на определенные функции с помощью программного обеспечения, что делает их более гибкими и адаптивными к различным приложениям.


В области фотоники, подход программируемой интегральной фотоники призван дополнить доминирующий в последние годы подход, основанный на ASPIC. Это позволит использовать универсальные свойства данного подхода и достичь преимуществ, аналогичных тем, которые предоставляют ПЛИС по сравнению с ASIC в электронике.


Программируемая интегральная фотоника вызывает интерес многих исследовательских групп по всему миру благодаря появлению новых приложений, которые требуют гибкости, реконфигурируемости, а также недорогих, компактных и малопотребляющих устройств.


Одной из областей, в которой проведены значительные работы, является квантовые информационные технологии. Программируемая интегральная фотоника может открыть путь к крупномасштабным квантовым затворам и схемам выборки бозонов на основе унитарных матричных преобразований.


В области телекоммуникаций программируемая интегральная фотоника может быть использована для реализации ряда функций обработки сигналов. Например, для создания преобразователей произвольных мод, устройств сопряжения с волоконно-оптическими сетями и широкополосных коммутаторов. Эти устройства также могут стать основой для компьютерных соединений.

В области сенсорики программируемая интегральная фотоника может привести к созданию общего класса программируемых измерительных устройств. Они могут быть успешно интегрированы в качестве составных элементов в будущий Интернет вещей

Вот несколько преимуществ фотонных микросхем по сравнению с кремниевыми микросхемами:

Высокая скорость передачи данных: Интегральная фотоника позволяет передавать данные на гораздо большие расстояния и со значительно более высокой скоростью, чем кремниевые микросхемы. Это особенно полезно для коммуникаций на большие расстояния или при работе с огромными объемами данных.

Низкое потребление энергии: Поскольку световые сигналы имеют намного меньшую диссипацию энергии по сравнению с электрическими, фотонные микросхемы потребляет гораздо меньше энергии при выполнении вычислений или передаче данных. Это может быть особенно важным для устройств, работающих от батарей или требующих минимального потребления энергии.

Большая пропускная способность: фотонные микросхемы обеспечивает большую пропускную способность данных, что означает возможность передавать и обрабатывать гораздо большие объемы информации одновременно. Это особенно полезно в сферах высокоскоростной связи, облачных вычислений и научных исследований.

Перейти на страницу:

Похожие книги

100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука
Англия Тюдоров. Полная история эпохи от Генриха VII до Елизаветы I
Англия Тюдоров. Полная история эпохи от Генриха VII до Елизаветы I

В книге, впервые изданной в Великобритании в 1988 году и с тех пор разошедшейся тиражом более четверти миллиона экземпляров и ставшей настоящей классикой, представлена Англия эпохи Тюдоров. Изложение охватывает период от последнего этапа Войны Алой и Белой розы (1455–1485) и прихода к власти Генриха VII, основателя династии, до смерти Елизаветы I в 1603 году. Глубокий анализ описываемых событий в политическом, социальном и религиознокультурном аспектах позволил не только проследить за реформированием государственной власти и церкви при Генрихе VII, Генрихе VIII, Эдуарде VI, Марии I и Елизавете I, но и раскрыть характеры монархов и других политических деятелей той эпохи. Авторитетное и тщательно проработанное исследование экономики, устройства общества и политической культуры Тюдоровской эпохи дополнено цветными иллюстрациями.«Я стремился написать о периоде английской истории с 1460 года до кончины Елизаветы I доступно для всех, а также наиболее полно и на современном уровне обобщить огромное количество работ по истории эпохи Тюдоров… Я твердо убежден, что для того, чтобы должным образом осознать значение периодов Генриха VIII и Елизаветы, эпоху Тюдоров и институты того времени необходимо рассматривать в совокупности». (Джон Гай)В формате PDF A4 сохранён издательский дизайн.

Джон Гай

История / Научно-популярная литература / Образование и наука
История зеркал. От отражения в воде до космической оптики
История зеркал. От отражения в воде до космической оптики

Зеркало… Это целая Вселенная! И хотя этот предмет присутствует в каждом доме, он окружен курьезами, загадками и мистикой. Человека влечет к зеркалам с момента их появления, и объяснить природу этой страсти невозможно. Зеркало – один из самых энергетически сильных предметов. Энергия, которую хранит в себе зеркало, способна изменить нашу жизнь как в лучшую, так и в худшую сторону. Но, к счастью, человек может управлять своим самым уникальным и удивительным изобретением. Мы расскажем, каково его происхождение, каким образом возникали народные приметы, связанные с этим изделием, и насколько расширилась сфера использования зеркал в нашей жизни. Сегодня существование человека без зеркал не представляется возможным, они нашли широкое применение в различных отраслях науки и техники. Зеркальное стекло нашло свое применение в оптических приборах: телескопах, лазерах, спектрометрах, зеркальных фотоаппаратах, перископах. Испокон веков вогнутые зеркала используют в медицинских инструментах. При помощи зеркальной терапии борются с фантомными болями. Где и когда появилось первое зеркало, точно неизвестно. Но мы знаем, что древний миф о Персее повествует о том, что уже тогда щит древнего героя позволил обратить в камень смертоносную горгону Медузу… Итак: Свет мой, зеркальце! Скажи да всю правду доложи… В формате PDF A4 сохранён издательский дизайн.

Алиса Шпигель

Астрология и хиромантия / Научно-популярная литература / Образование и наука