(32) Что такое мощность континуума? Существует много видов бесконечных множеств. Для начала можно сказать, что существует так называемая «счетная» бесконечность, например, множество целых положительных чисел: 1, 2, 3… Все множества, элементы которых можно поставить в однозначное соответствие с целыми числами, также являются счетными. Георг Кантор, однако, доказал, что не
(33) В математике слово «трансфинитный» является приблизительным синонимом «бесконечного» и используется чаще всего для характеристики «кардинального числа» или «ордианального числа».
(34) Это технический результат теории множеств Геделя-Бернайса (одного из вариантов аксиоматической теории множеств). Кристева никак не объясняет, какое значение он может иметь для поэтического языка. Отметим, что предварение этого технически довольно сложного высказывания выражением «как известно» является типичным примером интеллектуального терроризма.
(35) Весьма маловероятно, чтобы Лотреамон (1846–1870) мог «сознательно практиковать» теорему теории множеств Геделя-Бернайса (развитой между 1937 и 1940 годами) или даже просто теорему теории множеств (развиваемой начиная с 1870-х годов Кантором и другими учеными). Кроме того, нельзя «практиковать» теорему, ее можно
(36) Гедель в своей знаменитой статье (1931) доказывает две теоремы по поводу неполноты некоторых формальных систем, которые по крайней мере столь же сложны, как система арифметики. Первая теорема предъявляет предложение, которое в данной формальной системе, при условии, что она непротиворечива, оказывается ни доказуемым, ни опровергаемым. Тем не менее, можно при помощи рассуждений, неформализуемых в данной системе, понять, что рассматриваемое предложение
Зато изобрести противоречивые системы аксиом очень просто; а когда система противоречива, всегда существует доказательство этой противоречивости, которое можно провести средствами, формализуемыми в этой системе. Хотя может оказаться, что это доказательство трудно найти, его существование почти тривиально благодаря определению «противоречивости».
Прекрасное введение в теорему Геделя см. в Нагель и др. (1989).
(37) См. выше сноску 27. Необходимо подчеркнуть, что конечные множества — такие, как множество индивидов в обществе — не ставят никаких проблем.
(38) Николя Бурбаки — псевдоним коллектива, объединяющего несколько поколений французских математиков — опубликовали около тридцати томов серии «Элементы математики». Но если это и «элементы», произведения Бурбаки далеко не элементарны. Независимо от того, читала Кристева Бурбаки или нет, ее отсылка сделана лишь для того, чтобы произвести впечатление на читателя.
(39) Пространство C0
(R3) включает в себя все непрерывные функции с действительными значениям и на R3, которые «бесконечно стремятся к нулю». В точном определении этого понятия Кристева должна была бы сказать: a) |F(X) | вместо F(X); б) «превосходит 1/n» вместо «превосходит n»; и в) «включающем все непрерывные функции F(X) в R3 такие, что» вместо «в котором для всякой непрерывной функции F в R3».(40) Эта оплошность, вероятно, проистекает из комбинации двух ошибок: с одной стороны, похоже, что Кристева спутала логику предикатов с пропозициональной логикой, а с другой стороны, она или ее издатели совершили типографическую ошибку, так что вместо «пропозициональной» получилась «пропорциональная».
4. Интермеццо: когнитивный релятивизм в философии науки
*(41) Существует, очевидно, много других источников релятивистского Zeitgeis't'a, от романтизма до Хайдеггера, но мы не будем их здесь касаться.
(42) По-английски это называется «theory-ladenness of observations».