Ставшая уже классической формулировка идеи о глубокой концептуальной революции находится в главе, посвященной «науке постмодерна как поиску нестабильности» в книге Жана-Франсуа Лиотара
После краткого косвенного упоминания теоремы Геделя он берется за проблему предела предсказуемости в атомной и квантовой физике. С одной стороны, он замечает, что невозможно знать практически, например, местоположение всех молекул какого-то газа. Но это известный факт и он вот уже с конца девятнадцатого века составляет основу физической статистики. С другой стороны, когда Лиотар рассуждает о проблеме индетерминизма квантовой механики, он иллюстрирует это примером из доквантовой физики: понятием плотности (частным от деления массы на объем) газа. Ссылаясь на текст о газе физика Жана Перина143
, Лиотар отмечает, что плотность зависит от шкалы, избранной для наблюдения: например, если мы возьмем шар объемом молекулы, то плотность будет изменяться от нуля до предельной величины, так как молекула газа или находится в шаре, или нет. Но ведь это банальность: плотность — макроскопическая переменная и имеет смысл только в опыте с большим числом молекул. Но Лиотар делает из этого радикальные выводы:Знание, касающиеся плотности воздуха, разложилось, таким образом, на множество абсолютно несовместимых друг с другом высказываний и совместимых лишь относительно шкалы, избранной тем, кто формулирует высказывание. (Лиотар 1979, с. 92)
В этом замечании чувствуется ничем не оправданный субъективизм. Истина высказывания с очевидностью зависит от смысла составляющих его слов. И когда эти слова (как, например, плотность) имеют смысл, который в свою очередь зависит от шкалы измерений, то истина высказывания тоже будет зависеть от этого. Высказывания о плотности воздуха, если они тщательно сформулированы, вовсе не несовместимы. Затем Лиотар приводит геометрию фракталов, которая изучает неправильные объекты, такие, как снежинки и броуновское движение. Эти объекты, в определенном — техническом — смысле слова, не могут иметь измерение в целых числах144
. Он перечисляет также теорию катастроф, направления в математике, которое занимается особенностями некоторых поверхностей (и других сходных объектов). Эти две математические теории, действительно, интересны и имеют ряд приложений в естественных науках, в частности, в физике145. Как все передовые направления в науке, они предлагают новый инструментарий и привлекают внимание к новым проблемам. Но они вовсе не ставят под сомнение традиционную эпистемологию.В конечном счете, Лиотар не дает никакого весомого доказательства своим философским заключениям.
Идея, к которой подталкивают эти открытия (и многие другие), состоит в том, что преимущество непрерывно дифференцируемой функции146
как парадигмы познания и прогнозирования постепенно исчезает. Наука постмодерна, интересуясь неопределенностью, пределами допустимости, квантами, конфликтами неполноты, «фракталами», катастрофами, парадоксами прагматики, — она создает теорию собственной — разрывной, катастрофичной, не дифференцируемой147, парадоксальной — эволюции. Она изменяет смысл слова «знание» и говорит, как это изменение может происходить. Она производит не известное, а неизвестное. И она предполагает такую модель обоснования (легитимации), которая связана вовсе не с эффективной производительностью, а скорее с различием, понятым как паралогия. (Лиотар 1979, с. 97)