Создается впечатление, что существует традиция использования математических понятий вне их контекста. У Лакана это торы и мнимые числа, у Кристевой — бесконечные множества, в данном же случае это неевклидовы пространства (употребляемые в общей теории относительности)163
. Что все это могло бы означать? Впрочем, а что представляло бы собойСтатьи Бодрийара переполнены подобными физическими метафорами, например:
В евклидовом историческом пространстве, самый краткий путь от одной точки до другой, это прямая, прямая Прогресса и Демократии. Но это верно лишь для линейного пространства Просвещения164
. В нашем, неевклидовом, пространстве конца века, один неблагоприятный изгиб необратимо изменяет все траектории. Он, без сомнения, связан со сферичностью времени (она становится видимой на горизонте в конце века как сферичность земли — на горизонте в конце дня), или в тонкой дисторсии (искажении) поля притяжения. […]С помощью этого опрокидывания истории в бесконечность, с помощью этого гиперболического изгиба, сам век ускользает от своего конца. (Бодрийар 1992, с. 23–24)
Именно ему, без сомнения, мы обязаны этим забавным физическим опытом: впечатлением, что коллективные или индивидуальные события затягиваются дырой памяти. Эта утрата, несомненно, вызвана тем самым движением обратимости, тем самым параболическим изгибом исторического пространства. (Бодрийар 1992, стр. 36)
Но физика в целом у Бодрийяра не метафорична. В его собственно философских работах физика берется (как нам кажется) буквально, как, например, в эссе