Читаем Интернет вещей. Новая технологическая революция полностью

Предыдущий сценарий сосредоточен на шагах, которые обычные компании любой отрасли могут предпринять для достижения быстрых результатов. Но некоторые особые случаи требуют отдельного упоминания. Одна из моих любимых историй о получении быстрой выгоды от IoT рассказывает о нетипичной компании в нетипичной отрасли. Это история горнодобывающего предприятия Rio Tinto (рис. 5.5), которую я уже рассказывал в главе 3. Однако ее стоит рассказать еще раз. Она показывает, как быстрые результаты достигаются даже в экстремальных условиях. Внедренное Rio Tinto предиктивное техническое обслуживание окупилось сполна. Такие же выгоды может получить и любая другая компания, чьи системы и операции развернуты в экстремальной среде.


Рисунок 5.5. Пример Rio Tinto


Задача Rio Tinto заключалась в объединении процессов и оборудования в единую сеть с целью повышения эффективности, максимизации безопасности, минимизации штата и оптимизации объемов выработки. Ключевым аспектом проекта являлась автоматизация примерно 900 гигантских самосвалов посредством установки в каждый 92 датчиков для мониторинга состояния двигателей, трансмиссии и колес. Датчики отслеживают состояние, скорость, местоположение и другие параметры, позволяя грузовикам – которые перемещаются только по частной территории – функционировать без водителей.

Суммарно парк Rio Tinto генерирует примерно 4,9 ТБ данных ежедневно. Эта информация не только контролирует работу грузовиков, но и повышает эффективность операций. Превентивное техническое обслуживание обеспечивает максимальный срок службы оборудования. Датчики местоположения также позволяют для каждого грузовика выбирать самый короткий маршрут для минимизации потребления топлива. Как ни удивительно, эти маленькие выгоды выливаются в огромные преимущества.

Большинство необходимых технологий для создания такой системы уже существует – это и умные датчики, и интеллектуальные компоненты, и протоколы связи, и опыт в сфере программного обеспечения. Давайте снова обратимся к Rio Tinto. Как мы знаем, предприятие использует крайне дорогостоящее оборудование в очень агрессивной и удаленной среде. Это оборудование рано или поздно ломается, и лучше, чтобы это происходило не на самом дне глубокого карьера. Временные и финансовые затраты на ремонт вышедшего из строя оборудования Rio Tinto слишком велики – около 2 миллионов долларов в день на каждый сломанный грузовик. Теперь удвойте эти расходы, поскольку компания также вынуждена снять с работы еще один грузовик, который используется, чтобы вытащить поврежденную машину из карьера. (Чтобы вытащить одну из этих громадин, в дорожную службу не обратишься.) В итоге затраты Rio Tinto уже возрастают до 4 миллионов долларов в день – и это даже не считая стоимости ремонта поврежденного оборудования.

Помните, какое решение я описал в главе 3? Решить проблему помогает предиктивное техническое обслуживание. Вещи (оборудование, автомобили, машины, ресурсы, что угодно) ломаются во всех отраслях, причем зачастую это происходит в самое неподходящее время или в самом неподходящем месте. Должно быть, это следствие закона Мерфи. Однако если вы можете предвидеть эти поломки, то сумеете и предотвратить их возникновение в неудачное время и в неудобных местах. В результате вы сможете избежать сбоя в производстве, скажем, во время рождественских праздников, если вдруг какой-нибудь датчик покрылся пылью или возникли неполадки в моторе.

Предиктивное техническое обслуживание прибегает к ресурсам IoT для сбора и передачи информации. Ее можно анализировать почти в реальном времени, используя предиктивную аналитику для предсказания времени возникновения следующей неисправности, а желательно и определения момента проведения профилактики для устранения возможных неполадок. Это даст вам время скорректировать график производства, найти материалы и запчасти – все, что нужно, чтобы соблюсти производственный график, не тратя лишних денег из-за невозможности заблаговременного планирования.

Вот четыре сценария быстрого получения результатов и несколько примеров внедрения IoT реальными организациями. Хотите еще больше? Посмотрите, как ваши коллеги быстро получают выгоды, используя IoT во всевозможных отраслях. Попробуйте адаптировать один из следующих сценариев:


В сельском хозяйстве

• В Тасмании (Австралия) устричная ферма обратилась к IoT и предиктивной аналитике для оптимизации своей деятельности. Посредством системы датчиков IoT осуществляется мониторинг условий на ферме. Устрицы очень чувствительны к изменению температуры воды и ее чистоте. IoT дает предупреждение, если по какой-либо причине условия начинают ухудшаться, потенциально угрожая устрицам. Подобные решения используются и в США. Помогая компаниям спасти их устриц, IoT в буквальном смысле спасает потоки их выручки.

Перейти на страницу:

Все книги серии Top Business Awards

Похожие книги

Легкий текст. Как писать тексты, которые интересно читать и приятно слушать
Легкий текст. Как писать тексты, которые интересно читать и приятно слушать

Немало успешных спикеров с трудом пишут тексты, и ничуть не меньше успешных авторов весьма бледно смотрятся на сцене. Все дело в том, что речь устная и речь письменная – это два разных вида речи. И чтобы быть правильно понятыми, нам необходимо умение точно и увлекательно излагать мысли устно и письменно, о чем бы ни шла речь. Письма, сообщения, посты в соцсетях, тексты для публичных выступлений, рассказы о путешествиях или событиях – важно, чтобы тексты было приятно и читать, и слушать.В этой книге Светлана Иконникова, тренер по написанию текстов, рассказывает, как точно и убедительно излагать мысли в деловой переписке, соцсетях и мессенджерах, а Нина Зверева, известная телеведущая, бизнес-тренер, автор бестселлеров, объяснит, как создать идеальный текст для выступления. Как передать интонацию на письме, что такое геометрия и вектор текста, с чего он должен начинаться, для кого пишется, как зацепить внимание слушателя и читателя с первой фразы, интересные истории из практики, упражнения и советы – эта книга для тех, кто хочет, чтобы его читали, смотрели и слушали.

Нина Витальевна Зверева , Светлана Геннадьевна Иконникова

Деловая литература / Отраслевые издания / Финансы и бизнес