в течение одной полуволны сетевого напряжения накопительный конденсатор С1 заряжается, а во время другой — разряжается на обмотку повышающего трансформатора Т1 через тринистор VS1, который включается системой управления (СУ). Отличия порою сводятся лишь к способу управления тринистором. Основной недостаток подобных конструкций, по мнению автора, заключается в пониженной частоте питания умножителя напряжения, что может привести к увеличению пульсации на выходе блока и уменьшению эффективности работы "люстры". Кроме того, иногда можно наблюдать повышенный уровень шума трансформатора, являющийся следствием большой амплитуды токовых импульсов. Всего этого автору удалось избежать, разработав блок питания, схема которого (без высоковольтного умножителя) приведена на рис. 2.
Рассмотрим его работу.
Сетевое напряжение выпрямляется диодным мостом VD1. Пульсации выпрямленного напряжения сглаживает конденсатор С1, ток зарядки конденсатора в момент включения устройства в сеть ограничивает резистор R1. Через резистор R3 заряжается конденсатор СЗ. Одновременно вступает в действие генератор импульсов, выполненный на однопереходном транзисторе VT1. Его "спусковой" конденсатор заряжается через резисторы R4, R5 от параметрического стабилизатора, выполненного на балластном резисторе R2 и стабилитронах VD2, VD3. Как только напряжение на конденсаторе С2 достигает определенного значения, "срабатывает" транзистор и на управляющий переход тринистора поступает открывающий импульс (рис. 3,
Конденсатор С3 разряжается через тринистор на первичную обмотку трансформатора (рис. 3,
Варианты блока питания аэронизатора
Известно, что постоянное напряжение отрицательной полярности на аэроионизаторе должно быть не менее 25 кВ, практически же в домашних условиях на аэроионизатор желательно подводить напряжение около 30 кВ. Исходя из этих цифр были разработаны предлагаемые блоки питания.
Схема первого варианта блока питания приведена на рис. 1.
Сетевое напряжение, поступающее через вилку ХР1 и выключатель SA1, подается на мостовой выпрямитель, выполненный на диодах VD1-VD4. Выпрямленное напряжение фильтруется конденсатором С1. В итоге на этом конденсаторе присутствует постоянное напряжение около 300 В, которое используется для питания релаксационного генератора, составленного из элементов R3, С2, VS1, VS2. Нагрузка генератора — обмотка I трансформатора Т1. С его обмотки II импульсы амплитудой примерно 5 кВ и частотой следования 800 Гц поступают на умножитель напряжения, собранный на диодах VD5-VD10 и конденсаторах С3-С8. Получившееся на 410 выходе умножителя постоянное напряжение около 30 кВ подается через токоограничительный резистор R4 на "люстру".
Трансформатор ∙ Число витков ∙ Провод ∙ Сопротивление, Ом
ТВС-А, ТВС-Б
∙ 720 ∙ ПЭЛШО 0,1 ∙ 152TBC-110JBC-110M
∙ 940 ∙ ПЭЛШО 0,1 ∙ 240ТВС-110А
∙ 1000 ∙ ПЭВ-2 0,1 ∙ 250ТВС-110Л1
∙ 1300 ∙ ПЭВ-2 0,09 ∙ 430ТВС-110Л2
∙ 900 ∙ ПЭВ-2 0,08 ∙ 310ТВС-110ЛЗ
∙ 940 ∙ ПЭЛШО 0,1 ∙ 240ТВС-110ЛА
∙ 1200 ∙ ПЭВ-2 0,1 ∙ 380ТВС-110АМ
∙ 900 ∙ ПЭВ-2 0,08 ∙ 280ТВС-110Л4
∙ 1290 ∙ ПЭМ-2 0,1 ∙ 410Неоновая лампа HL1 — индикатор включения блока питания. Резистор R1 ограничивает броски тока, неизбежные при зарядке конденсатора С1. Предохранители FU1 и FU2 срабатывают при выходе из строя элементов выпрямителя либо высоковольтного умножителя напряжения.