Читаем Интернет-журнал "Домашняя лаборатория", 2007 №11 полностью

О Землю постоянно ударяются космические осколки. И поэтому так важно знать, какой величины небесные тела падают на нас и сколь часто. Тела с поперечником 1 м входят в атмосферу Земли несколько раз в месяц. Они часто взрываются на большой высоте, выделяя энергию, равную взрыву небольшой атомной бомбы. Примерно один раз в столетие к нам прилетает тело 100 м в поперечнике, оставляя после себя большую память (ощутимый удар). После взрыва подобного небесного тела в 1908 году над сибирской тайгой, в бассейне реки Подкаменная

Тунгуска [Красноярский край], были повалены деревья на площади около 2 тыс. кв2[32]

Удар небесного тела с поперечником 1 км, случающийся раз в миллион лет, может привести к огромным разрушениям и даже вызвать климатические изменения. Столкновение с небесным телом размером 10 км в поперечнике, вероятно, и привело к исчезновению динозавров на рубеже меловой и третичной эпох 65 млн лет назад. Хотя тело такого размера может появиться лишь раз в 100 млн лет, на Земле уже предпринимают шаги, чтобы не быть застигнутыми врасплох. Разрабатываются проекты «Околоземные объекты» (NEOs) и «Наблюдение за околоземными астероидами» (NEAT), в соответствии с которыми к 2010 году удастся отслеживать 90 % астероидов с поперечником более 1 км, общее число которых, по различным оценкам, находится в пределах 500—1000. Другая программа, «Spacewatch», осуществляемая Аризонским университетом, состоит в наблюдении за небом в поисках возможных «кандидатов» на столкновение с Землей.

За более подробными сведениями обращайтесь на узлы Всемирной Паутины:

http://neat.jpl.nasa.gov

http://nео. jpl.nasa.gov

http://араcewatch.lpl.arizona.edu/

Что было до «большого взрыва»?

Поскольку время и пространство ведут свой отчет с «большого взрыва», понятие «до» не имеет никакого смысла. Это равносильно вопросу, что находится северней Северного полюса. Или, как бы выразилась американская писательница Гертруда Стайн[33], нет никакого «затем» затем[34]. Но подобные трудности не останавливают теоретиков. Возможно, до «большого взрыва» время было мнимым; вероятно, не было вообще ничего, и Вселенная возникла из флуктуации вакуума; или же произошло столкновение с другой «браной» (см. затронутый ранее вопрос о множественных вселенных). Таким теориям трудно найти экспериментальное подтверждение, поскольку огромная температура первоначального огненного шара не допускала создания каких-либо атомных или субатомных образований, которые могли бы существовать до начала расширения Вселенной.



Список идей


Многие идеи, о которых повествует наша книга, рассматриваются лишь в той мере, в какой они связаны с крупнейшими, не решенными наукой задачами. Однако читателям, возможно, хочется получить более подробные сведения. Данный раздел позволит углубить представления о затронутых вскользь темах. Темы расположены в порядке их появления на страницах книги, и при этом даются ссылки на источники, если вы пожелаете расширить свой кругозор. Дополнительные сведения содержатся в разделе «Источники для углубленного изучения».

Надеемся, что эти идеи смогут удовлетворить ваше любопытство или даже разжечь его. В будущем удастся решить некоторые из этих проблем, но им на смену придут другие.

1. Антивещество

Почти каждой элементарной частице соответствует античастица. Как правило, античастицы обладают той же массой, что и их обычный собрат с зарядом одинаковой величины, только противоположного знака. Как видно на рис. 1.1, каждому кварку соответствует свой антикварк (антиверхний, антиочарованный…), каждому лептону — свой антилептон антиэлектронное нейтрино, антимюонное нейтрино…), a W+- и W’-бозону — свои античастицы. Лишь у фотона, Z-бозона, глюона (всего восемь разновидностей) и гипотетического гравитона нет античастиц. Иначе говоря, они сами служат для себя античастицами.



Рис. 1.1.Основные частицы


Как упоминалось в гл. 2, антивещество было предсказано теорией, когда в 1928 году британский физик П. А. М. Дирак объединил квантовую механику со специальной теорией относительности. Сходным, но более простым примером здесь могут послужить решения уравнения равные +3 и —3. Зачастую при наличии у уравнения двух решений одно обычно отбрасывают, считая не имеющим физического смысла. Ученые пытались исключить решение уравнения Дирака, допускавшее существование подобной электрону частицы, но несущей положительный, а не отрицательный заряд. Но спустя четыре года [1932] американский физик Карл Андерсон представил опытные свидетельства существования позитрона при исследовании космических лучей, так что предсказание подтвердилось. В 1955 году в Калифорнийском университете Эмилио Сегре и Оуэн Чемберлен наблюдали антипротон, а антинейтрон обнаружился годом позже.

Перейти на страницу:

Похожие книги