До 1960-х годов существовал некий сугубо математический метод, как оказалось, связанный с теорией хаоса. Гастон Морис Жулиа, математик из Алжира, после ранения в сражениях Первой мировой войны вынужден был носить на лице кожаную повязку, защищавшую сильно искалеченный нос. Из-за многочисленных операций ему приходилось долго скитаться по госпиталям, где, чтобы как-то скоротать время, он занимался математическими выкладками. В 25 лет он пишет «Записку о приближении рациональных функций». Работу он делал в связи с темой, объявленной в 1915 году Французской академией наук на соискание главной премии 1918 года, которой и удостоился; хотя французский математик и астроном Пьер Жозеф Луи Фату (1878–1929) опубликовал в декабре 1917 года работу на ту же тему, однако Жулиа отослал свою статью в Академию наук раньше. Функция представляет собой математическое правило вычисления наподобие следующего: f
(х) = х2 +Бенуа Мандельброта, родившегося в Польше в 1924 году, со статьей Жулиа познакомил в 1945 году родной дядя, профессор математики. В то время идеи Жулиа его не заинтересовали. Но спустя 30 лет после головокружительной научной карьеры Мандельброт очутился в компании IBM и обратил мощь ЭВМ на итеративные вычисления Жулиа. Мандельброт первым разработал метод графического построения, когда ЭВМ выводит на экран образ схождения и расхождения приближаемой функции.
Рис. 1.9.
Прекрасные образы, порождаемые методами итерации Мандельброта и Жулиа, способствовали одно время появлению бесчисленных книг и узлов Всемирной Паутины. Вот некоторые из них:
Exploring Chaos — A Guide to the New Science of Disorder / Nina Hall (Ed.). N.Y.: W. W. Norton & Company, 1991.
В 2002 году Стивен Вулфрем издал книгу по смежной тематике A New Kind of Science (см. www.Wolfram.com
). Его труд основан на собственных исследованиях в области клеточных автоматов, представляющих собой ряд одинаково запрограммированных автоматов, иначе «клеток», взаимодействующих друг с другом по определенным правилам. С помощью очень простых правил можно создать очень сложные образы. Некоторые из этих образов очень похожи на природные объекты, однако установление связи между математикой хаоса и пригодным описанием реального мира все еще ждет своего часа.13. Предсказание землетрясений
Предсказаний землетрясений сегодня много. Поисковые машины в Интернете на запрос «Предсказание землетрясений» выдадут вам более 50 тыс. узлов Всемирной Паутины. Некоторые предсказания делаются на основе «данных» экстрасенсов (см.: Wynn Charles М., Wiggins Arthur W., Harris Sidney. Quantum Leaps in the Wrong Direction: Where Real Science Ends… and Pseudoscience Begins.
Washington, 2001). Другие усилия связаны с соотнесением землетрясений с земным электричеством, поведением животных, расположением планет или иными явлениями. Несмотря на ошибочность большинства прогнозов, хотя бы один непременно оказывается верным.
Предположим, приятель предлагает вам пари: «Ставлю 20 долларов на то, что в следующем месяце произойдет крупное землетрясение в помеченной точками вот здесь на карте области».
Не принимайте вызова. Ваш приятель наверняка выиграет. Помеченная точками область на карте (рис. 1.10) соответствует границам плит, составляющих земную кору.
Рис. 1.10.
Когда конвенционные потоки в мантии (см.: Список идей, 11. Земля: история недр) увлекают за собой плиты, происходят землетрясения. Хотя некоторые землетрясения случаются и в иных местах, помимо оконечностей плит, именно на оконечности и приходится подавляющая часть таких событий. Статистические данные о землетрясениях различной силы за год таковы: