Читаем Интернет-журнал "Домашняя лаборатория", 2007 №11 полностью

где B3 = aT1; B4 = aT2.

Максимальное увеличение суммарной динамической и дополнительной погрешности, при учете корреляционной связи между этими погрешностями, в рассмотренном примере, не превышает 20 %. Такое увеличение суммарной погрешности является несущественным и, поэтому, во многих случаях, корреляционной составляющей можно пренебречь.

В том случае, если дополнительная погрешность является чисто аддитивной, то математическое ожидание ее квадрата определяется только статистическими параметрами влияющей величины:

M{Δ2доп} = b2[μ2εσ2ε]. (15)

где b — коэффициент влияния аддитивной дополнительной погрешности.

На рис. 3 представлена структура модели образования мультипликативно-аддитивной дополнительной погрешности.



Рис. 3.Структура модели образования мультипликативно-аддитивной дополнительной погрешности измерительного преобразователя


Дополнительная погрешность на выходе ИП равна:

Δдоп(t) = ax(t)ε(t) + bε(t).

Математическое ожидание квадрата мультипликативно-аддитивной дополнительной погрешности, при учете корреляции между измеряемой и влияющей величиной, равно:


Выражение (16) состоит из трех частей, образующих три слагаемых суммарной погрешности. Первая часть характеризует мультипликативную составляющую, которая совпадает с (6). Вторая часть — аддитивную, совпадающую с (15). Третья — характеризует статистическую зависимость между аддитивной и мультипликативной составляющими суммарной погрешности:

M{Δp} = 2ab[μxμ2ε + μxσ2ε + 2μεσxσεp]. (17)

Максимальное увеличение суммарной дополнительной погрешности, при учете корреляционной связи достигает 100 %. Такое увеличение суммарной погрешности за счет корреляционной составляющей является существенным и поэтому ее следует обязательно учитывать при расчетах аддитивно-мультипликативной дополнительной погрешности.

Рассмотренная в качестве примера структура измерительного канала, имеющая инерционные звенья, является лишь частным случаем более сложных динамических структур. Наличие в каналах измеряемой и влияющей величин сложных динамических структур не позволяет представлять результаты в аналитическом виде. В этих случаях следует использовать численное моделирование.


Литература

1. Миф Н.П. Оптимизация точности измерений в производстве. — М.: Издательство стандартов, 1991. - 136 с.

2. Нормирование и использование метрологических характеристик средств измерений. Нормативно-технические документы. ГОСТ 8.009-84, методический материал по применению ГОСТ 8.009-84, - М.: Изд-во стандартов, 1985.

3. Волгин В.В. Модели случайных процессов для вероятностных задач синтеза АСУ. Генеральная совокупность реализаций. Эргодичность. Единственная реализация. — М.: Издательство МЭИ, 1998. - 64 с.

4. Волгин В.В., Каримов PH. Оценка корреляционных функций в промышленных системах управления. — М.: Энергия, 1979. - 80 с.

5. Сергеев А.Г., Крохин В.В. Метрология. — М.: Логос, 2000.

6. Пинхусович P.Л, Кузнецов Б.Ф., Пудалов А.Д. Метод расчета дополнительной погрешности измерительных преобразователей при коррелированных воздействиях. // Измерительная техника, 2002, № 9, с. 12–14.

7. Пинхусович P.Л, Кузнецов Б.Ф., Пудалов А.Д. Модель дополнительной погрешности измерительных преобразователей от множества влияющих воздействий. // Математические методы в технике и технологиях: Сборник трудов XV Международной научной конференции. В 10-и т. Том 7. Секция 7/ Под общ. Ред. B.C. Балакирева. Тамбов: Изд-во ТГТУ, 2002, с. 13–16.

Перейти на страницу:

Похожие книги