Получите кавитационное облачко в кювете, заполненной глицерином. Выключите в комнате свет и, подождав несколько минут, чтобы глаза привыкли к темноте, посмотрите в направлении торца вибратора. Вы заметите небольшую светящуюся область синеватого оттенка. Из опыта следует, что некоторые жидкости люминесцируют под действием ультразвука. Обнаруженное вами явление так и называется: сонолюминесценция. Теория этого интересного явления разработана еще далеко не полностью. Согласно одной из гипотез сжатие кавитационных пузырьков при захлопывании приводит к сильному нагреванию и свечению содержащегося в них газа. По другой гипотезе свечение газа в кавитационных пузырьках обусловлено электрическими разрядами. Свечение глицерина под действием ультразвука незначительно по яркости, поэтому вначале вам его будет трудно обнаружить. Чтобы облегчить наблюдения, на свету перед кюветой расположите лупу, через которую будет виден торец вибратора. Далее, получив ультразвук максимальной интенсивности, в полной темноте приблизьте глаз к лупе. Если вы увидите люминесценцию глицерина в виде синеватого свечения, лупу можно будет убрать. После этого увидеть свечение не составит труда, так как теперь вы будете знать, куда смотреть.
Продольная звуковая волна представляет собой периодически чередующиеся области сжатий и разрежений, которые распространяются в среде с постоянной скоростью. Следовательно, в каждой точке звукового поля существует переменное звуковое давление.
Вместе с тем звуковая волна оказывает и постоянное давление на встречающиеся на ее пути препятствия. Это давление звука называется радиационным.
Радиационное давление свойственно всем волнам вообще, независимо от их природы: и волны на поверхности жидкости, и звук, и свет «давят» на препятствия.
Радиационное давление ультразвука ответственно еще за один акустический эффект: ультразвуковой фонтан на границе раздела двух жидкостей или жидкости и газа.
На рисунке Рис. 1 представлен возможный вариант установки, обеспечивающей введение ультразвука в жидкость.
1
— Пластмассовая чашечка с просверленным отверстием в донышке. 2 — Торец вибратора. 3 — Резиновый клей или пластилин. 4 — Стеклянная или пластмассовая трубочка. 5 — Резиновая прокладка. 6 — Каркас обмотки возбуждения.В чашечку налейте воду так, чтобы вибратор был закрыт слоем воды толщиной 4–8 мм. Включите генератор и настройте его в резонанс с вибратором: поверхность воды должна вспучиться, одновременно Вы услышите характерный кавитационный шум. Чем тоньше слой жидкости над вибратором, тем сильнее вспучивается поверхность воды, даже могут быть небольшие брызги, на рисунке (Рис. 2) Вы можете посмотреть, как (приблизительно) это будет выглядеть.
Чтобы получить фонтан до 15 см высотой надо очень точно настроить уровень жидкости в чашечке. Удобно здесь пользоваться обычным медицинским шприцем. Уровень жидкости должен быть чуть-чуть ниже, чем торец вибратора.
Сначала следует налить воду на одном уровне с вибратором. Включите генератор, настройте в резонанс. Если фонтана не образовалось, а вода просто затекла на торец вибратора, выключите вибратор и заберите из чашечки шприцем немного воды. Повторите операцию.
Когда Вы подберете оптимальный уровень воды, при настройке в резонанс вода начнет интенсивно распыляться. Это очень красивое и интересное явление.
Получив ультразвуковой фонтан один раз, второй раз Вам, несомненно, будет его легче получить, т. к.
Вы уже будете знать, что следует увидеть, какие условия эксперимента необходимы для его наблюдения.
Вы наверняка заметите, что фонтан, появившись, довольно быстро ослабевает, это связано с расходом воды на аэрозоль. В принципе, организовав медленную подачу воды на торец вибратора, тоже можно получить ультразвуковой фонтан.
ПРАКТИКА
Стирка ультразвуком
Внедрение передовых энергосберегающих технологий выдвинуло на передовые рубежи прогресса новое устройство бытового назначения — ультразвуковое стирающее устройство.
Стирка ультразвуком происходит за счет периодического формирования в объеме жидкости волн сжатия-разрежения, возникающих в практически несжимаемой среде — воде. Белье, помещенное в такую жидкость, подвергается интенсивному гидроакустическому воздействию. Гидроакустические волны инициируют появление микроскопических пузырьков газа, которые способствуют отделению микрочастиц грязи из объема стираемого белья. При образовании и последующем схлопывании (разрушении) пузырьков газа образуется озон, стерилизующий белье. В ряде случаев, при большой энергии ультразвуковых колебаний, может наблюдаться сонолюминесценция — свечение жидкости, особенно заметное в затемненном помещении.