Читаем Интернет-журнал "Домашняя лаборатория", 2007 №2 полностью

Укажем еще на одно интересное следствие возможной зависимости гравитационной постоянной G от времени. В рамках ньютоновской механики зависимость от времени константы G приводит к нарушению закона сохранения энергии, что легко видно из следующего рассмотрения. Пусть небольшой шарик и кольцо двигаются навстречу друг другу из бесконечности под действием взаимного притяжения. В некоторый момент времени шарик пролетает через кольцо, и эти объекты, продолжая свое движение, удаляются друг от друга. Если G(t) уменьшается со временем, то сила притяжения между шариком и кольцом на некотором расстоянии между ними во время сближения оказывается больше, чем эта же сила на том же расстоянии во время их разлета. Следовательно, относительная скорость и, тем самым, кинетическая энергия после встречи объектов оказываются больше, чем перед их встречей. Поскольку потенциальная энергия обращается в ноль на больших расстояниях между телами, то в случае взаимодействующих частиц нарушается закон сохранения энергии. Следовательно, требование сохранения энергии и ньютоновский закон тяготения в форме F(r) = — G(t)m1m2/r2 не совместимы, если G(t) не = const.

Если предположить, что закон сохранения энергии более фундаментален, чем закон тяготения Ньютона, то можно получить некоторое новое выражение для силы притяжения. Численные значения возникшей поправки соответствуют постоянной Хаббла, данной в формуле (4). Такой поправкой обычно пренебрегают.

Из нового соотношения для силы притяжения следует, что если гравитация зависит от времени, то во Вселенной не может быть двух частиц, неподвижных друг относительно друга. Это заключение согласуется с наблюдением, что практически все физические системы находятся в состоянии относительного движения, начиная с вакуумных флуктуаций микроскопических систем и кончая расширением Вселенной. Поскольку новое соотношение для силы притяжения не имеет строго радиального характера, то в общем случае угловой момент может не сохраняться.

Ожидаемое изменение фундаментальных констант крайне мало, поэтому требуются очень точные измерения. Отметим, что в таких экспериментах часто определяют не одну только константу связи, а некоторую комбинацию нескольких констант. Поэтому интерпретация результатов измерений сильно зависит от того, вариация какой константы рассматривается. При определенных обстоятельствах в таких комбинациях искомая зависимость может полностью теряться. Кроме того, необходимо быть уверенным в том, что в основе измерения не заложено предположение о постоянстве величин, временную зависимость которых предстоит измерить.

Эксперименты можно разделить на две категории. Одни состоят в измерении вариации фундаментальных констант при современных условиях, а другие G — в геофизических и астрономических наблюдениях, которые позволяют сравнить современное значение константы с ее значением в более ранний момент времени или со средним значением за некоторые временные отрезки в прошлом. Например, результаты какой-нибудь реакции, протекавшей много лет назад, можно сравнить с современными результатами той же реакции. Соответствующие сечения реакции позволяют получить информацию о константах связи. Одна из проблем геофизических экспериментов заключается в процедуре определения возраста образцов, так как популярный метод, состоящий в измерении радиоактивности, также зависит от констант связи.

Известно много экспериментов обеих категорий. В таблице приведены ограничения, полученные для различных констант (Н = h•100 км•Мпс-1с-1 при 0,4 < h < 1):



В таблице приведены наиболее важные результаты, касающиеся проблемы постоянства фундаментальных физических констант. Они полностью исключают гипотезу Дирака. Отметим, однако, что эти ограничения в ряде случаев справедливы только в предположении, что все остальные константы не зависят от времени.

Возможно, что до сих пор поиск зависимости мировых констант от времени проводился на неадекватном временном масштабе. В общем случае предполагается, что константы изменяются как степени космологического времени H-1. Однако, вполне допустимо считать, что компактификация дополнительных размерностей закончилась очень быстро и их радиусы сегодня всего лишь осциллируют вблизи своих положений равновесия. В этом случае адекватный временной масштаб определялся бы планковским временем ~5•10-44 с и поэтому наблюдаемые величины представляли бы только средние значения, усредненные по большому числу осцилляций.

Перейти на страницу:

Похожие книги

Уютный дом без особых затрат
Уютный дом без особых затрат

Инна Криксунова известна читателям как автор легких, веселых, практичных книг, рассказывающих о том, как добиться успеха в различных областях жизни.Новая книга Инны рассказывает о том, как создать уют в доме, не затрачивая на это баснословные суммы в твердой валюте.Вы узнаете, как выбрать хороших мастеров для проведения ремонтных работ, как самостоятельно провести мелкий ремонт, не требующий особой квалификации, как правильно выбрать мебель и предметы убранства, а также расставить их в квартире наилучшим образом.Эта книга научит вас быть дизайнером собственного дома – создать в нем особую неповторимую, индивидуальную атмосферу. Вы поймете, что это не так уж и трудно: как говорится, не боги горшки обжигают!

Инна Абрамовна Криксунова , Инна А. Криксунова

Сделай сам / Хобби и ремесла / Дом и досуг