Подготовленный к использованию буфер с ЦТАБ и хроматом недостаточно стабилен, поэтому его следует ежедневно менять на свежий. Через несколько часов стояния появляется мелкокристаллический осадок, проявляемый на фореграммах как пик, который делает невозможным обработку результатов. Поэтому ежедневно необходимо применять свежий буфер, при этом работа с исходными растворами требует много времени. При использовании хромат-раствора с концентрацией хромата 50 мМ с 0.2 мМ серной кислоты и раствора ЦТАБ с такой же концентрацией, перед употреблением необходимо отмерить об. 10 % хромат-раствора в измерительную колбу, долить водой примерно до 2/3 объема колбы, добавить об. 1 % исходного раствора ЦТАБ и затем долить водой до метки измерительной колбы. Только при точном соблюдении такой последовательности при смешивании не образуется упомянутый осадок. Исходные растворы можно использовать в течение несколько месяцев. Концентрацию 50 мМ для раствора ЦТАБ можно получить только при температурах около 25 °C, а при 18 °C раствор теряет прозрачность.
Рис. 44.
Условия: прибор КЭ: Waters Quanta 4000. Капилляр 75 мкм, 50/58 см; запись данных: 20 Гц. Поле: -517 В/см, непрямое детектирование 254 нм, ввод пробы гидростатический, 10 см, 30 с; буфер: 5 мМ хромат/серная кислота, pH 8.0 с 0.5 мМ ЦТАБ: проба: анионный стандарт с 10 ррт, см. рис. 42.
Рис. 45.
Условия: прибор КЭ — Beck-man, Р/АСЕ 2000; капилляр 75 мкм, 40/47 см. Поле:-532 В/см, детектирование: 214 им, ввод пробы давлением 3 с, буфер — 10 мМ фосфат; нейтральный маркер: бензиловый спирт.
Из-за очень высокой эффективности (300–500 тыс. тарелок на метр) и коротких времен анализа не исключены проблемы записи данных. Для ширины пиков меньше в pH нескольких секунд достигается граница возможности записи данных для большинства приборов КЭ. Например, достичь необходимых для хорошего интегрирования 20 точек для каждого пика с частотой записи данных 20 Гц в этих условиях уже не удается.
Если вместо обращения потока проводить только его остановку, разделение анионов можно провести за 10–15 минут. Эта возможность часто рекламируется, однако для разделения анионов эта методика никаких преимуществ не дает.
Вещества, останавливающие, но не обращающие поток, представлены в таблице 17 вместе с уже упоминаемыми буферными добавками. Эти вещества, хотя и нейтрализуют отрицательный поверхностный заряд капилляра, однако двойной электрический слой не образуют и, тем самым, обеспечить избыточный положительный заряд на поверхности капилляра не могут.
Наряду с регулированием ЭОП в разделении анионов большую роль играет также подвижность анионов буфера. Ниже приведены характеристики ряда анионов, поглощающих в УФ-области (таблица 18).
Хроматные буферные системы применяли, в частности, при определении анионов в воде озера Байкал. Разделение их представлено на рис. 46. При этом ионы с большей подвижностью — хлориды, сульфаты и карбонаты — определяются количественно методом стандартной добавки, в то время как содержание нитратов и фосфатов вследствие низких концентраций определяются путем сравнения с внешним стандартом.
Рис. 46.
Условия: прибор КЭ — Waters Quanta 4000. Запись данных: 20 Гц, капилляр 75 мкм, 50/58 см; попе: — 431 В/см, непрямое детектирование 254 нм, ввод пробы гидростатический, 10 см, 30 с; буфер: 5 мМ хромат/серная кислота, pH 8.0, 0.5 мМ ЦТАБ; порядок выхода пиков: хлорид — 1 (0.5 ppm), сульфат — 2 (12.4 ррт), нитрат — 3 (<0.5 ррт), фосфат -4 (<0.5ррт), гидрогексакарбонат — 5 (81.1 ррт).
Результаты сравнения для сульфат-ионов показаны на рис. 47. Данные аналогичных измерений с помощью ИОХ хорошо коррелируют с результатами, полученными методом КЭ.