Читаем Интернет-журнал "Домашняя лаборатория", 2008 №5 полностью

Размер получившихся фрагментов устанавливают, разделяя их в геле под действием электрического тока — чем меньше фрагмент, тем быстрее он движется (слева — результат такого разделения).

Расщепление фрагмента ДНК каждой рестриктазой по отдельности и их смесью позволяет создать рестрикционную карту фрагмента.


Итак, мы расставили молекулы методом генетического и физического картирования. Вернемся к методу секвенирования. Использовалась примесь дидезоксинуклеотидов — ddNTP (на рисунке — справа; у них нет ОН-группы у 3'-атома углерода), которая добавлялась к обычным дезоксинуклеотидам (на рисунке слева). И при синтезе ДНК in vitro это приводило к прекращению синтеза цепи в позиции, в которой вставился ddNTP. Через позицию 3' идет присоединение нуклеотида к строящейся молекуле ДНК. Но если на 3'-конце не будет гидроксильной группы, а водород, то синтез дальше не пойдет — он будет терминирован.



Примесь дидезоксинуклеотидов (справа, нет ОН-группы у 3'-атома углерода) к дезоксинуклеотидам (слева) при синтезе ДНК in vitro приводит к прекращению синтеза цепи в позиции, в которой ставился ddNTP


Это используется следующим образом. У нас есть матрица (нить ДНК), которую надо секвенировать. Если идет синтез, и в первой позиции матрицы стоит А (см. рис. ниже), то может встроиться обычный Т и синтез пойдет дальше, а может встроиться ddTTP и синтез дальше не пойдет. Произойдет обрыв цепи, а полученный синтезированный огрызок займет при фракционировании определенную позицию согласно своему размеру. Следующий обрыв будет соответствовать второй букве секвенируемой нити, и также займет свою позицию согласно длине при фракционировании на электрофорезе и т. д. И так по каждому нуклеотиду. Так мы восстановим последовательность нуклеотидов в секвенируемой нити ДНК. Этот метод предложил Фрэд Сэнгер, за что получил свою вторую Нобелевскую премию.



Метод секвенирования ДНК, основанный на терминации синтеза дидезоксинукпеотидтрифосфатами


Рассмотрим определение последовательности нуклеотидов в клонированном фрагменте ДНК. Клонированный фрагмент находится в так называемой векторной молекуле ДНК — молекуле, которая позволяет ввести его в клетку (обычно это клетка бактериальная, но иногда используются и дрожжевые клетки). Все работы по секвенированию генома человека прошли при участии бактериальных векторных молекул. Участок вектора, прилежащий к вставке, содержит последовательность нуклеотидов, комплементарную универсальному секвенирующему праймеру. С этого праймера инициируется синтез ДНК in vitro, который с первого нуклеотида будет идти по матрице клонированного фрагмента ДНК человека. Универсальных праймеров используется два, один к последовательности вектора прилежащей к одному концу вставки, другой праймер к последовательности вектора прилежащей к другому концу вставки. С одного из праймеров клонированный фрагмент секвенируется с одной стороны, а с другого праймера — с другой стороны.



Участки молекулы ДНК распознаваемые праймерами для секвенирования, присоединены к исследуемому фрагменту ДНК путем. Исследуемый фрагмент ДНК вставляют в векторную молекулу ДНК. Участки вектора, прилежащие к вставке, содержат последовательности нуклеотидов, комплементарные универсальным секвенирующим праймерам — левому и правому. С этих праймеров инициируется синтез ДНк in vitro


Перейти на страницу:

Похожие книги