Чтобы понять, почему это происходит, можно нарисовать траектории лучей света возле червоточины (вид из балка): рис. 15.3. Первичное изображение приходит в камеру пучком световых лучей, идущих от Сатурна по кратчайшему из возможных путей; один из лучей этого пучка изображен на рисунке черной линией (1). Вторичное изображение достигает камеры с пучком, в который входит красный луч (2); этот пучок проходит вдоль стенки червоточины в направлении, противоположном направлению черного луча, закручиваясь влево, против часовой стрелки — по кратчайшему из возможных левовращающихся путей от Сатурна до камеры. Третичное изображение приходит с пучком зеленого луча (3), по кратчайшему из возможных правовращающихся путей, делающих больше одного оборота вдоль стенки червоточины. И, наконец, изображение четвертого порядка приходит с пучком коричневого луча (4), по кратчайшему из возможных левовращающихся путей, делающих более одного оборота вдоль стенки червоточины.
Можете объяснить, как приходят в камеру изображения пятого и шестого порядка? Почему по мере удлинения червоточины изображения уменьшаются? И почему изображения появляются с края «хрустального шара», а сдвигаются к центру?
Ширина линзирования червоточины
Разобравшись, как длина червоточины влияет на кадр, мы оставим длину постоянной и весьма небольшой — равной радиусу червоточины — и займемся варьированием гравитационного линзирования. Мы увеличивали ширину линзирования от почти нулевой до примерно половины радиуса червоточины и следили, какой эффект это оказывает на изображение. На рис. 15.4 показаны два крайних случая.
Когда ширина линзирования очень мала, форма червоточины (см. сверху слева) такова, что виден резкий переход от внешней Вселенной (растянутые по горизонтали раструбы) к горловине червоточины (вертикальный цилиндр). Для камеры (см. сверху справа) червоточина искажает звездное поле и темное облако в левом верхнем углу лишь чуть-чуть и только вблизи края червоточины. Не считая этого, червоточина попросту заслоняет звездное поле от наблюдателя, как делает это любое непрозрачное тело со слабой гравитацией, например планета или звездолет. В нижней части рис. 15.4 ширина линзирования равна примерно половине радиуса червоточины, поэтому переход от горловины (вертикальный цилиндр) к внешней Вселенной (растянутые по горизонтали раструбы) стал более плавным.
При такой большой ширине линзирования червоточина сильно искажает звездное поле и темное облако (см. снизу справа) примерно таким же образом, как это делает невращающаяся черная дыра (рис. 8.3 и рис. 8.4), с образованием множественных изображений. Также линзирование увеличивает вторичное и третичное изображения Сатурна. На втором кадре червоточина выглядит больше, чем на первом, — она занимает больший угол обзора камеры. Это происходит не потому, что камера находится ближе к устью, — данное расстояние одинаково для обоих случаев. Причина видимого увеличения исключительно в гравитационном линзировании.
Червоточина в «Интерстеллар»
Когда Крис смог оценить варианты с различной длиной червоточины и шириной линзирования, его выбор был однозначен. Множественные изображения, видимые в червоточине при средней и большой длине, могли сбить с толку массового зрителя, поэтому Крис сделал червоточину в «Интерстеллар» очень короткой, длиной лишь в один процент от ее радиуса. И он выбрал умеренную ширину линзирования, около пяти процентов от радиуса, чтобы линзирование окружающего звездного поля было заметным и затейливым, но значительно меньшим, чем линзирование Гаргантюа.
Выбранная для фильма червоточина — верхняя из показанных на рис. 15.2. И после того как команда Double Negative создала для нее фон (туманности, пылевые облака, звезды), вид получился просто потрясающий (рис. 15.5). На мой взгляд, это одна из самых впечатляющих сцен в фильме.
Путешествие через червоточину
10 апреля 2014 года, когда уже шла послесъемочная обработка фильма, мне позвонил Крис. У него возникли сложности со сценой полета «Эндюранс» через червоточину, и ему срочно нужен был совет. Я приехал в «Синкопи», и Крис показал мне, в чем проблема.