Однако такая близость к Гаргантюа означает, что на планету Миллер действуют чудовищные силы приливной гравитации Гаргантюа. Настолько чудовищные, что они почти разрывают планету на части (см. главу 6
). Почти, но не совсем. Вместо этого они просто деформируют планету, и деформируют значительно (рис. 17.3), так, что она сильно вытягивается в направлениях к черной дыре и от нее.Если бы планета Миллер смещалась относительно радиального направления к Гаргантюа (то есть не была повернута к дыре все время одной и той же стороной), то и приливные силы смещались бы относительно планеты. Сначала планета сминалась бы с запада и востока и растягивалась от севера к югу. Затем, через четверть оборота (относительно радиального направления к Гаргантюа), сминалась бы с севера и юга и растягивалась от запада к востоку. Эти сжатия и растяжения были бы просто огромны по сравнению с прочностью мантии планеты (ее твердых наружных слоев). Мантия была бы стерта в пыль, а затем возникший от трения жар раскалил бы планету докрасна. Но Миллер выглядит вовсе не так! Вывод ясен: в Кип-версии планета всегда развернута к Гаргантюа одной и той же стороной (рис. 17.4), или почти одной и той же (мы обсудим это после).
Пространственный вихрь
Законы Эйнштейна утверждают, что если смотреть издалека, например с планеты Манн, планета Миллер будет двигаться вокруг Гаргантюа по орбите длиной в миллиард километров, делая один оборот в течение 1,7 часа. Это приблизительно половина скорости света! Экипаж «Рейнджера», замеряя орбитальный период, из-за замедления времени получает в 60 000 раз меньшее значение – десятую долю секунды. Десять оборотов вокруг Гаргантюа за одну секунду – вот это скорость! Так что же, планета летит быстрее света? Нет, это не так. Дело тут в пространственном вихре, порожденном быстрым вращением Гаргантюа. Относительно завихряющегося пространства вблизи планеты и времени, измеренного там же, скорость движения планеты меньше световой, и только это имеет значение в плане запрета на сверхсветовую скорость.
Поскольку планета (в Кип-версии) всегда повернута к Гаргантюа одной и той же стороной (рис. 17.4), она должна вращаться вокруг своей оси с той же частотой, что и кружится по орбите, – десять оборотов в секунду. Как она может вращаться столь быстро? Неужто центробежные силы не разорвут ее на части? Нет, не разорвут – и снова благодаря пространственному вихрю. Планета не почувствует разрушительных центробежных сил, если будет вращаться в точности с той же скоростью, с которой вблизи нее завихряется пространство. А почти так оно и есть. Поэтому центробежные силы, возникающие при вращении планеты, в действительности слабы. Но если бы планета, напротив, не вращалась относительно отдаленных звезд, она бы вращалась с частотой десять оборотов в секунду относительно пространственного вихря и была бы разорвана центробежными силами. Странная штука эта относительность.
Гигантские волны на планете Миллер
Откуда могли появиться две гигантские – в 1,2 километра вышиной – волны, которые норовят захлестнуть «Рейнджер» на планете Миллер (рис. 17.5)?
Некоторое время я ломал голову, производил расчеты и в конце концов нашел два возможных объяснения. Оба варианта требуют, чтобы планета не была четко направлена на Гаргантюа. Вместо этого она должна раскачиваться (относительно радиального направления к дыре) туда-сюда в небольших пределах – от положения на рис. 17.6 слева до положения на рис. 17.6 справа.
Такое раскачивание вполне естественно, в чем можно убедиться, рассмотрев, как влияет на планету приливная гравитация Гаргантюа.
На рис. 17.6 приливная гравитация изображена в виде тендекс-линий (см. главу 4
). Вне зависимости от того, в какую сторону отклонилась планета (левая или правая половина рис. 17.6), синие сжимающие тендекс-линии Гаргантюа сдавливают ее «с боков», возвращая к «нормальной» ориентации: «нижним концом» к Гаргантюа, «верхним» – от нее (рис. 17.3). Кроме того, красные растягивающие тендекс-линии Гаргантюа тянут «нижний конец» планеты к черной дыре, а «верхний» – от нее. Это также возвращает планету к ее «нормальной» ориентации.