Читаем Инженерная эвристика полностью

В. Ковалёв. Во-первых, я никак не могу взять в толк, как можно попасть в то, что не имеет размеров, то есть в точку. Во-вторых, точность — это идеализация, химера нашего ума, а в реальном мире ничто не может абсолютно точно совпасть друг с другом, ничто не может абсолютно заменить другое. В-третьих, не надо путать математику с логикой, а логику формальную (математическую) с диалектической, то есть рассудок с разумом. Математика — предел формализации как таковой, то есть рассудок чистейшей воды, который умеет только разделять, фиксировать и связывать внешней связью эти выделенные им неподвижности. Созданная математикой абстракция точки, то есть дискретности как таковой, у которой единственное свойство — отсутствие свойств, — ярчайший пример голого рассудка. Плоскость же по отношению к точке есть её прямая противоположность, то есть континуум, непрерывность как таковая. Математика — это только фиксация их различия и ничего более. А в чём состоит их тождество, она не знает, это уже вопрос философии, которая на что-нибудь да может-таки сгодиться. Наше сознание в любом процессе познания то проваливается в голую математику, то поднимется на уровень философии, и только так, пульсируя, оно может получить действительное знание.

А. Трушечкин[91]. Общепринятый ответ на этот парадокс — что «невероятное» не означает «невозможное». Невероятное событие — вероятность которого равна нулю, невозможное — которое не может произойти. На это можно возразить: «Как же? Согласно исходным идеям теории вероятностей, если вероятность равна нулю, то событие и есть невозможное!»

Тогда тут, пожалуй, можно разобрать подробнее, как мы делаем вывод о том, что вероятность попадания в точку равно нулю. Здесь речь идёт о геометрической вероятности. Предположим для простоты, что мишень ограниченна: например, это круг единичной площади, и мы стреляем по нему безразмерными пулями. Тогда вероятность попадания в произвольную область этого круга равна площади этой области. Площадь точки равна нулю. Почему? Ответ: по определению (из теории меры) множество имеет площадь ноль, если его можно накрыть множеством сколь угодно малой площади. Для точки можно это сделать. Например, рассмотреть последовательность маленьких кружков с центрами в этой точке и радиусами, стремящимися к нулю. Вероятность попадания в кружок с уменьшением его радиуса уменьшается, но не ноль. То есть множество нулевой площади определяется не непосредственно, а как бы итеративно, путём приближения множествами уменьшающейся площади. Поэтому и утверждение о том, что вероятность попадания в точку равна нулю, можно воспринимать так же: здесь не чистый ноль, а бесконечно малая последовательность чисел. Попасть в точку можно, но вероятность исчезающе мала.

Таким образом, в этих рассуждениях всплывает на поверхность то, что точка — это идеализация очень маленького множества (конец обсуждения)

Так что, любезный наш читатель, зря старался А. Н. Колмогоров?

ВОПРОС № 97

Парадокс неожиданности. Однажды в воскресенье начальник тюрьмы вызвал преступника, приговорённого к казни, и сообщил ему: «Вас казнят на следующей неделе в полдень. День казни станет для вас сюрпризом, вы узнаете о нём только когда палач в полдень войдёт к вам в камеру». Начальник тюрьмы был честнейшим человеком и никогда не врал. Заключённый подумал над его словами и улыбнулся: «Вы не сможете казнить меня, если хотите выполнить свои обещания!»

Тем не менее, начальник тюрьмы выполнил свои обещания, и узник был казнён неожиданно для него, как и было обещано! Как это возможно?

<p>Парадоксы теории множеств</p>

«Никто не может изгнать нас из рая, созданного нам Кантором!» — заявил Давид Гильберт по поводу теории множеств Георга Кантора. Таково было чувство восторга от новой «игрушки» у математиков того времени. В 1873 году Кантор ввел понятие множества. Первоначально новая теория помогла решить ряд проблем. Однако очень скоро в ней обнаружились противоречия.

Первое противоречие возникло благодаря введению и анализу самого большого множества из всех: множества всех множеств. Простейший вопрос «Существует ли множество всех множеств?» тут же приводит к парадоксу. Для этого надо напомнить, что в теории множеств разрешима процедура включения одного множества в состав другого или «взятие множества от множества». (Это вам ничего не напоминает? Правильно — вездесущую рекурсию!)

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука