Априори можно предположить возникновение трех взаимосвязанных субпакетов, опирающихся на технологии рекомбинации ДНК, эмбриональных стволовых клеток и клонирования, и развивающихся в интересах медицины, сельского хозяйства, природопользования и высокотехнологичного машиностроения:
1. Биоинженерия (биокатализ, биосинтез, биосенсоры, клеточные маркеры, в перспективе — живые конструкционные материалы и живые системы);
2. Управление геномом (производство ГМ-растений, ГМ-животных, ГМ-микроорганизмов, в т. ч. ГМ-антибиотиков, ГМ-ферментов, ГМ-дрожжевых культур, биопестицидов и т. д.);
1. Генетика. В ее основе — клеточная теория живого, представления о строении клетки, опыты Менделя по наследственности, «ядерная» теория наследственности. Модель наследственности дала возможность перейти от стохастической к направленной селекции, что послужило основой «зеленой революции», то есть создания высокоурожайных устойчивых сортов злаковых в конце 1950-х годов. Эта пороговая технология является связующей между традиционным сельским хозяйством, комплексом знаний по генетике и теории наследственности и современным ТП «Биотехнологии». Важным следствием этой технологии является Закон о патентовании продуктов селекции растений, заложивший основу институциональных и нормативно-правовых решений, обеспечивающих развитие биологических технологий.
Важнейшим открытием в области генетики и молекулярной биологии стало открытие Д.Уотсоном и Ф.Криком строения молекулы ДНК и последующее описание механизма наследственности.
2. Теория эволюции. Принципиальное значение в развитии биотехнологий сыграл биогенетический закон Геккеля-Мюллера, согласно которому онтогенез (развитие организма) повторяет филогенез (развитие вида). Понимание этого закона позволило за счет работы с эмбриональными формами расширить технику гибридизации, перейти к направленной работе с химерами (организмами, состоящими из генетически разнородных тканей) и, в конечном счете, создать ряд техник, основанных на работе с эмбриональными стволовыми клетками.
В настоящее время завершено создание ядра ТП «Биотехнологии». Взаимосвязанными ключевыми технологиями пакета являются «Разрезание ДНК» и «Рекомбинация ДНК». Эти технологии позволяют, как модифицировать уже существующие наборы хромосом, так и конструировать произвольные геномы, не связанные генетически с каким-либо природным прототипом.
Прогресс биологии, с одной стороны, и прогресс вычислительной техники, с другой стороны, позволили расшифровать и картировать некоторые геномы.
Можно предсказать создание в течение горизонта прогнозирования базы генетических данных, включающей исчерпывающую информацию по целому ряду биологических видов. Вполне вероятно, что по мере создания такой базы будет достигнуто понимание структуры Пангенома — полной совокупности геномов земных живых организмов. Будут сделаны выводы об априори допустимых и априори недопустимых комбинациях нуклеотидов в проектируемом геноме.
Понятно, что конечной целью должна стать технология, позволяющая массовому конечному пользователю заниматься генетическим дизайном. Нормативно-правовой базой такой работы является Законодательный акт по работе с рекомбинантной ДНК, в которую, конечно, будут вноситься изменения, направленные на расширение возможностей такой работы.
Институциональным решением в области биотехнологий стало создание Биотехнологической Промышленной Организации, координирующей всю коммерческую и значительную часть исследовательской деятельности, а также накапливающую биотехнологические патенты.
Вторая важнейшая «ядерная» технология ТП «Биотехнологии» связана с использованием стволовых клеток, прежде всего, эмбриональных стволовых клеток (Л.Томпсон, Д.Герхарт, 1998 г.). Во-первых, эта технология дает возможность управлять режимом работы клетки, не меняя генома, регулируя экспрессию соответствующих генов. Во-вторых, способность стволовых клеток делиться с образованием любых дифференцированных клеток открывает возможность генетической перестройки уже сформировавшегося, взрослого организма.
Технологии работы с эмбриональными стволовыми клетками позволили решить проблему клонирования млекопитающих, что создает условия для ускорения направленной селекции через «штампование» генетически эквивалентных особей. Клонирование может найти себе широкое применение и в медицине.
Особенность ТП «Биотехнологии» состоит в том, что его ядро полностью создано и в дальнейшем будет претерпевать лишь оптимизационные улучшения, а периферия далеко еще не обрела системных свойств, в связи с чем перспективы развития технологического пакета совершенно неясны.
Априори можно предположить возникновение трех взаимосвязанных субпакетов, опирающихся на технологии рекомбинации ДНК, эмбриональных стволовых клеток и клонирования, и развивающихся в интересах медицины, сельского хозяйства, природопользования и высокотехнологичного машиностроения:
1. Биоинженерия (биокатализ, биосинтез, биосенсоры, клеточные маркеры, в перспективе — живые конструкционные материалы и живые системы);