Читаем Ипотека и уравнения полностью

Он говорил о потребительской и меновой стоимости, деньгах и богатстве и проанализировал две функции денег: как меры стоимости и как средства обращения товаров. Отрицательное отношение Аристотеля к ростовщичеству сохранилось до Нового времени и легло в основу доктрины католической церкви. Ученый рассуждал и на другие экономические темы, например о частной собственности и рабстве, и его идеи оказали большое влияние на исламскую этику.

Римляне не внесли в греческую систему счисления существенных изменений.

Они использовали для обозначения чисел буквы М, D, C, L, X, V и I, а большие числа обозначали горизонтальной чертой над этими буквами. Естественно, римлян ожидали те же трудности, что и греков: нетрудно представить, насколько сложно записать в римской системе счисления действительно большое число, например миллион, или выполнить с числами различные действия.

Именно поэтому когда в VIII веке арабы через Андалусию принесли в Европу индийскую систему счисления, все, кто занимался расчетами, сразу же начали использовать индийские цифры, а римская система счисления окончательно отошла в прошлое.

* * *

ОСНОВАНИЯ СИСТЕМ СЧИСЛЕНИЯ И ЕДИНИЦЫ ИЗМЕРЕНИЯ

Сегодня почти не верится, что раньше люди вели все подсчеты только на пальцах рук, однако именно на этом основана современная система счисления, которую мы используем каждый день — позиционная десятичная. Однако эта система не универсальна — ее не используют самые быстрые и точные устройства для вычислений — компьютеры. Какие же системы счисления применялись в прошлом и какие — используются сейчас?

Десятичная система счисления

— Десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

— Выражение: 72 60310 = 7∙10 + 2∙103 + 6∙102 + 0∙101 + 3∙100.

Используется в повседневной жизни с древних времен.

Шестнадцатеричная система

— 16 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.

— Выражение: 72 60310  = 11В9В16 = 1∙164 + 1∙163 + 11∙162 + 9∙161 + 11∙160.

— Используется в электронике.

Двоичная система

— Две цифры: 0, 1.

— Выражение: 72 60310 = 100011011100110112 = 1∙216 + 0∙215 + 0∙214 + 0∙213 + 1∙212 + 1∙ 211 + 0∙210 + 1∙29 + 1∙28 + 1∙27 + 0∙26 + 0∙25 + 1∙24 + 1∙23 + 0∙22 + 1∙2 + 1∙20.

— Используется в компьютерной технике.

Двадцатеричная система счисления

∙ Двадцать цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F, G, Н, I, J.

∙ Выражение: 72 60310 = 91А320  = 9 ∙ 20 + 1∙202 + 10∙201 + 3∙200.

∙ Применялась майя и шумерами, для записи использовались особые знаки.

Напомним, что на протяжении веков в разных культурах бытовали совершенно разные единицы измерения величин (веса, длины, объемов, денег), которые довольно часто были тесно связаны с применяемой системой счисления. Однако если при измерении величин и записи чисел в качестве основания используется одно и то же число, то вычисления, без которых невозможна экономика, становятся гораздо проще. Например, в десятичной метрической системе для обозначения кратных единиц измерения применяются десятичные приставки, а для записи величин также используется система счисления по основанию 10 (пример: 2,547 метра — это 2 метра 5 дециметров 4 сантиметра и 7 миллиметров).

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги