Достижение Полинга заключается в том, что ему удалось описать, как именно квантовая механика управляет химическими связями между атомами. Он проанализировал силу, длину, угол каждой химической связи. Полинга можно сравнить с Леонардо да Винчи, который впервые стал рисовать людей, верно подмечая мельчайшие анатомические детали. Поскольку химия, в сущности – это дисциплина, изучающая, как создаются и разрываются межатомные связи, Полинг практически в одиночку модернизировал целую область науки. Он абсолютно по праву заслужил один из величайших научных комплиментов, полученный от одного из коллег: «Полинг доказал, что химию можно
После этого триумфа Полинг продолжал заниматься основами химии. Вскоре он определил, почему все снежинки шестиугольные: дело в том, что шестиугольную структуру имеют сами кристаллы льда. В то же время Полингу явно не терпелось вырваться за пределы простейшей физической химии. Например, в ходе одного из своих исследований он определил, почему серповидно-клеточная анемия смертельна для человека. Дело в том, что молекулы гемоглобина в эритроцитах больного имеют неправильную форму и не могут связываться с кислородом. Это исследование гемоглобина замечательно тем, что оно впервые позволило выявить в качестве причины заболевания аномальную молекулу[72]
. Работа Полинга полностью перевернула представление врачей о медицине. Позже, в 1948 году, Полинг сильно заболел гриппом и, проводя целые дни в постели, пришел к мысли, которая помогла совершить революцию в молекулярной биологии. Он решил показать, как молекулы белков могут образовывать длинные цилиндры, которые называются альфа-спиралями. Функционирование белка в значительной степени определяется формой его молекул, и Полинг был первым, кто смог определить, как отдельные фрагменты белка «узнают», какая форма молекулы является «правильной».Во всех этих случаях Полинга по-настоящему интересовало (кроме очевидной пользы для медицины) лишь то, как почти по волшебству у вещества возникают новые свойства, когда маленькие «глупые» атомы самостоятельно укладываются в большие структуры. Самая захватывающая сторона проблемы заключалась в том, что в молекулярной химии часть порой нисколько не напоминает целое. Например, вы никогда не догадались бы (если бы не увидели этого сами), что атомы углерода, кислорода и азота могут объединяться в аминокислоты. Аналогично, сложно себе представить, как аминокислоты сочленяются, образуя белки, а белки, в свою очередь, управляют жизнедеятельностью всех живых организмов. Эта работа, связанная с изучением атомных систем, была даже сложнее, чем синтез новых элементов. Но такой прыжок в невероятную сложность также повышал вероятность неверных интерпретаций и ошибок. В долгосрочной перспективе легкий успех Полинга с открытием альфа-спиралей оказался еще одной иронией судьбы: ведь если бы Полинг не запутался с другой спиральной молекулой, ДНК, то, несомненно, навечно остался бы в пятерке величайших ученых всех времен и народов.
Как и многие другие, Полинг практически не интересовался ДНК до 1952 года, хотя швейцарский биолог Фридрих Мишер обнаружил ДНК еще в 1869 году. Мишер совершил это открытие, поливая спиртом и желудочным соком свиней пропитанные гноем повязки (которые брал в расположенных неподалеку больницах). Ученый проделывал эти манипуляции до тех пор, пока на повязках не оставалась только клейкая тягучая сероватая субстанция. Исследовав это вещество, Мишер немедленно и самодовольно заявил, что дезоксирибонуклеиновая кислота окажется важнейшим биологическим веществом. К сожалению, химический анализ показал высокое содержание фосфора в этих образцах. В те времена единственным достойным изучения биохимическим соединением считались белки, а поскольку фосфор в белках отсутствует, ДНК сочли остатком, молекулярным довеском[73]
.Это предубеждение удалось развенчать только в 1952 году, после того как был выполнен революционный эксперимент над вирусами. Вирусы нападают на клетки, прикрепляются к ним и впрыскивают в них свои гены. Но в начале 50-х никто еще не знал, где именно содержится эта генетическая информация – в белках или в ДНК. Поэтому два генетика использовали радиоактивные индикаторы, чтобы пометить и фосфор, содержащийся в ДНК вирусов, и серу, которая в большом количестве содержится в их белках. После того как исследователи проанализировали несколько зараженных клеток, они обнаружили, что радиоактивный фосфор был внедрен в клетки и передан при делении, а с серой этого не произошло. Белки не могли быть носителями генетической информации – таким носителем оказалась ДНК[74]
.