В этой объединенной работе Эйнштейн добавил пассаж, что если охладить атомы до крайне низких температур – намного ниже, чем до состояния сверхпроводимости, то они конденсируются с переходом в новое агрегатное состояние. Тем не менее задача охлаждения атомов до столь низких температур превосходила технические возможности начала XX века, так что даже дальновидный Эйнштейн не стал всерьез рассматривать такую возможность. Он считал описанный им конденсат лишь любопытной теоретической возможностью. Поэтому особенно поразительно, что ученым удалось наблюдать вещество в состоянии БЭК всего лишь через десять лет, когда было открыто явление сверхтекучести гелия. В таком жидком гелии небольшие группы атомов слипались вместе. Электронные пары Купера в сверхпроводниках также отчасти напоминают БЭК. Но такое связывание в сверхпроводниках и сверхтекучих жидкостях проявлялось в ограниченном объеме. Более того, Эйнштейн представлял себе это состояние вещества совсем иначе – как очень холодный разреженный туман. Тем не менее ни создатели жидкого гелия, ни ученые из группы BCS даже не пытались подстроиться под гипотезу Эйнштейна. Об агрегатном состоянии БЭК не удалось узнать ничего нового вплоть до 1995 года, когда двое умных ученых из Университета штата Колорадо получили вещество, которое можно было назвать «газом из рубидиевых атомов» (газообразным рубидием).
Примечательно, что важнейшим техническим средством, которое помогло достичь состояния БЭК, был лазер. Принцип работы лазера основан на тех идеях о природе фотонов, которые впервые высказал Бозе. Это может показаться нелогичным, ведь обычно лазер разогревает тела. Но лазер вполне может и охлаждать атомы, если уметь правильно с ним обращаться. На базовом наноскопическом уровне температура определяется только средней скоростью движения частиц. Горячие молекулы постоянно сталкиваются друг с другом, а холодные еле движутся. Поэтому, чтобы охладить какое-либо тело, нужно максимально замедлить его частицы. При лазерном охлаждении ученые пересекают несколько лучей. Подобно охотникам за привидениями, они создают ловушку из «оптической патоки». Когда разреженные атомы рубидиевого газа проходили через оптическую патоку, лазеры бомбардировали их протонами малой интенсивности. Атомы рубидия гораздо массивнее и тяжелее протонов, так что такая бомбардировка напоминает расстрел астероида из пулемета. Тем не менее, несмотря на разницу в размерах, достаточно сильный шквальный огонь может остановить даже астероид, и именно это произошло с рубидием. Поглощая протоны, летевшие в них со всех сторон, атомы рубидия все замедлялись и замедлялись, пока их температура не упала примерно до одной десятитысячной доли градуса выше абсолютного нуля.
Тем не менее даже такая температура является настоящим пеклом для конденсата Эйнштейна – Бозе (теперь вы догадываетесь, почему Эйнштейн был столь пессимистичен?). Поэтому ученые из Колорадо, Эрик Корнелл и Карл Виман, применили вторую фазу охлаждения, на которой сильный магнит многократно отсасывал из рубидиевого газа самые «горячие» из оставшихся атомов. Примерно то же самое происходит, когда мы дуем на ложку с горячим бульоном, чтобы ее остудить (выдуть самые горячие атомы). Когда высокоэнергетические атомы покинули газ, его температура упала еще ниже. Медленно остужая газ и удаляя на каждой стадии лишь несколько самых теплых атомов, ученые опустили температуру до одной миллиардной доли градуса (0,000000001 К) выше абсолютного нуля. На данном этапе образец из двух тысяч атомов рубидия наконец превратился в конденсат Эйнштейна – Бозе – самую холодную, липкую и неустойчивую субстанцию во Вселенной.
Но формулировка «две тысячи атомов рубидия» относительно вещества в состоянии БЭК не совсем правильна. Ученые не получили кусок рубидия из двух тысяч атомов, слипшихся, как пастила. Это было особое состояние вещества, для описания которого придется вновь обратиться к принципу неопределенности. Как я уже упоминал, температура – это просто показатель скорости атомов. Если температура молекул падает до миллиардной доли градуса, то их скорость становится практически нулевой, и, следовательно, неопределенность этой скорости абсурдно мала. Она тоже практически нулевая. А поскольку на таком уровне атомы проявляют волновые свойства, неопределенность их положения должна быть довольно велика.
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное