Читаем Исчезающая ложка полностью

Итак, как далеко может зайти подобное путешествие с острова на остров? Доведется ли нам наблюдать пики маленьких вулканов, теряющиеся далеко в бесконечности за границами периодической системы, и называть их какими-нибудь протяжными именами вроде э-э-э-э-э…энний, элемент № 999? Увы, нет. Даже если ученые найдут способ склеивания сверхтяжелых элементов и смогут бросить якорь на очень далеких «островках стабильности», то их, образно выражаясь, практически сразу смоет в бушующий атомный океан.

Чтобы понять причину, вернемся к рассказу об Альберте Эйнштейне и к той величайшей ошибке, которую он совершил в своей научной карьере. Несмотря на распространенное мнение поклонников Эйнштейна, он получил Нобелевскую премию по физике отнюдь не за Специальную или Общую теорию относительности. Награда была присуждена Эйнштейну за объяснение странного квантово-механического явления, которое называется фотоэлектрическим эффектом. Он одним из первых доказал, что квантовая механика – не просто неуклюжая система допущений, призванная обосновать непостижимые эксперименты, а самая настоящая реальность, пусть и необычная. Тот факт, что именно Эйнштейн объяснил явление фотоэффекта, можно назвать иронией судьбы сразу по двум причинам. Во-первых, с возрастом Эйнштейн становился все придирчивее и постепенно стал воспринимать квантовую механику с изрядным скептицизмом. Ее статистическая и глубоко вероятностная природа слишком напоминала Эйнштейну азартные игры, именно поэтому он однажды произнес свой знаменитый афоризм «Бог не играет в кости». Эйнштейн был неправ, и как жаль, что большинство людей так и не услышали фразу, которую в ответ произнес Нильс Бор: «Эйнштейн, прекратите указывать Богу, что ему делать».

Во-вторых, Эйнштейн всю жизнь пытался согласовать квантовую механику и теорию относительности в непротиворечивую и стройную «теорию всего», но это ему не удалось. Правда, кое-что получилось. Иногда при столкновении двух теорий они блестяще дополняют друг друга: релятивистские уточнения скорости электрона помогли понять, почему ртуть (мой любимый химический элемент) при комнатной температуре является жидкостью, а не твердым веществом. Нам бы никогда не удалось создать элемент № 99, эйнштейний, если бы мы не знали обеих этих теорий. Но в целом идеи Эйнштейна о силе тяжести, скорости света и относительности не вполне согласуются с квантовой механикой. В некоторых ситуациях, где две эти теории вступают в плотный контакт – например, в черных дырах, – рушатся любые причудливые уравнения.

Возможно, это столкновение теорий и знаменует предел периодической системы. Вновь обратимся к аналогии между электронами и планетами. Как известно, Меркурий совершает оборот вокруг Солнца всего за три земных месяца, а у Нептуна на это уходит 165 земных лет. Так и электроны, расположенные на внутренних атомных оболочках, вращаются вокруг ядра гораздо быстрее, чем электроны внешних оболочек. Точная скорость электрона зависит от отношения количества протонов в ядре к постоянной тонкой структуры альфа, рассмотренной в предыдущей главе. По мере того как это отношение приближается к единице, скорость электрона становится все ближе к скорости света. Но не забывайте, что, по современным расчетам, значение постоянной тонкой структуры составляет около 1/137. Если в атоме элемента будет более 137 протонов, скорость вращения его электронов должна превысить скорость света – а согласно теории относительности Эйнштейна, это невозможно.

Итак, гипотетический элемент № 137 должен оказаться последним. Ему уже придумали название «фейнманий» – в честь знаменитого физика Ричарда Фейнмана, впервые указавшего на этот предел. Кстати, именно Фейнман назвал константу альфа «одной из величайших проклятых тайн физики» – теперь вы понимаете почему. После того как неукротимая сила квантовой механики врежется в неподвижную теорию относительности, одна из этих сил должна будет уступить. Никто не знает какая.

Некоторые физики, всерьез воспринимающие возможность путешествий во времени, полагают, что в теории относительности может быть лазейка, позволяющая особым (недоступным для наблюдения) частицам, тахионам, двигаться быстрее скорости света, которая составляет около 300 000 километров в секунду. Вся загвоздка, связанная с тахионами, заключается в том, что они, возможно, движутся против хода времени – то есть в прошлое. Поэтому, если когда-нибудь химикам удастся синтезировать «фейнманий-плюс-один» – унтриоктий, не устремятся ли его внутренние электроны в прошлое, пока остальная часть атома будет оставаться в нашем времени? Вероятно, нет. Гораздо логичнее предположить, что скорость света жестко ограничивает предельный размер атома и просто уничтожает все возникающие за фейнманием «островки стабильности», точно как в 1950-е годы атомная бомба стерла с лица земли коралловые атоллы.

Означает ли это, что периодическая таблица вскоре закончится? Станет застывшей и неизменной, как окаменелость?

Нет, нет и еще раз нет.

* * *

Перейти на страницу:

Все книги серии Civiliзация

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Искусство ведения войны. Эволюция тактики и стратегии
Искусство ведения войны. Эволюция тактики и стратегии

Основоположник американской военно-морской стратегии XX века, «отец» морской авиации контр-адмирал Брэдли Аллен Фиске в свое время фактически возглавлял все оперативное планирование ВМС США, руководил модернизацией флота и его подготовкой к войне. В книге он рассматривает принципы военного искусства, особое внимание уделяя стратегии, объясняя цель своего труда как концентрацию необходимых знаний для правильного формирования и подготовки армии и флота, управления ими в целях защиты своей страны в неспокойные годы и обеспечения сохранения мирных позиций в любое другое время.

Брэдли Аллан Фиске , Брэдли Аллен Фиске

Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное