Читаем Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков полностью

— И все-таки именно он положил начало их концу, — убежденно возражает Фило. — Но вернемся к последней сцене вашего спектакля, Асмодей. По правде говоря, она меня очень удивила. Конечно, в театре, да и в кино, нам нередко показывают чьи-то сны. Но ведь то, что мы увидали во Франции семнадцатого века, можно назвать спектаклем лишь условно. Каким же образом вы умудрились показать нам то, что приснилось Мольеру?

— Понятия не имею, — нахально скалится тот. — Как сказал поэт, я за чужой не отвечаю сон.

— Кроме шуток, Асмодей! Зачем вам это понадобилось? — допытывается Мате.

Черт пожимает плечами. Что же еще ему оставалось, если Паскаль умер в 1662 году, а Мольер получил разрешение на постановку «Тартюфа» только в 1669-м?

— Но разве вы не могли избрать для своего представления другую, более раннюю их встречу?

— Ко! Ко-ко-ко! Более раннюю… Как бы не так, мсье! Я драматург. Мне нужно было свести их не когда-нибудь, а в момент перелома, когда усилия их начали приносить реальные плоды. И потом, с чего вы взяли, что Паскаль и Мольер встречались прежде? Они вообще никогда не встречались!

— Так какого же черта вы нам головы морочите, мистификатор вы этакий? — не выдерживает Мате.

— Да, да, — вторит Фило, — на что нам встреча, которой никогда не было? Зачем она нам, спрашиваю я, хотя бы даже и под соусом сновидения?

Но Асмодей неуязвим. По его словам, французский критик девятнадцатого века Сент-Бёв поступил точно так же, и никто, между прочим, его за то не осуждал. В сочинении, посвященном истории и литературному наследию Пор-Рояля, он тоже описал вымышленный разговор Мольера и Паскаля. Тем самым знаменитый француз как бы восполнил пробел в биографии двух великих людей, которым было для чего свидеться и о чем поспорить. А что сделал венгерский математик двадцатого века Альфред Реньи? Его книга «Письма о вероятности» — не что иное, как им самим сочиненные послания Паскаля к Ферма. Разумеется, он знал подлинную их переписку, знал историю становления математики случайного, и все-таки Паскаль у него высказывается как человек, причастный к более позднему опыту теории вероятностей, о котором на самом деле не знал.

При имени Реньи Мате смягчается. Правда, «Писем о вероятности» он не читал, зато «Диалоги о математике» Реньи — его любимая книга. И все-таки…

— Что можно Юпитеру, нельзя быку! — назидательно изрекает он.

— Но почему же, мсье? Чем я хуже Реньи?

Самонадеянность черта так забавна, что Мате фыркает, и гнев его остывает окончательно.

— Ну-с, — говорит он, снисходительно посмеиваясь, — так что же вы придумали в подражание Реньи? Может быть, несуществующую встречу Паскаля и ферма?

— Вот именно, мсье! — не моргнув глазом подтверждает черт. — Они ведь тоже никогда не виделись и тоже оперируют у меня понятиями более позднего времени. Зато письма о формуле сочетаний — это уж чистая правда. Ферма и Паскаль действительно отправили их друг к другу одновременно.

Мате только руками разводит. Но ссылка на Сент-Бёва и Реньи сделала свое, и он уже не чувствует охоты возмущаться. В конце концов, право на некоторую вольность есть у всякого художника. А то, что Асмодей художник — по крайней мере в своем деле — сомневаться не приходится.

— Мерси, мсье! — расплывается черт (он если не слышал, так угадал мысли Мате). — Очень рад, что вы это уразумели. Ведь как-никак, благодарение аду, я не диссертацию сочинял и не научную монографию, а пьесу. Паскаль, Ферма, Мольер — о них уже столько понаписано! Тут тебе и о жизни, и о творчестве, и о философских взглядах… Ну а я рискнул показать всего лишь несколько связанных с ними эпизодов…

— Не так уж это мало, — замечает Фило. — На сей счет существует пропасть поучительных изречений, но я приведу одно: чтобы узнать вкус барашка, не обязательно съедать его целиком. Хватит и одной котлетки… Объясните, однако, вот что: зачем вы так старательно приукрашивали все, связанное с теорией вероятностей? Зачем придумали историю с паштетом, с подземельем, с Клубом знаменитых математиков? Разве нельзя было то же самое изложить просто, без всяких ухищрений?

— Конечно, можно. Но на сей раз благоволите обратить свои претензии к мсье Паскалю, мыслью которого я руководствовался. По его мнению, математика — предмет настолько серьезный, что никогда не следует упускать случай сделать его еще и немного занимательным… Впрочем, теория вероятностей, как вы понимаете, далеко не исчерпывается тем, что уместилось в моем спектакле. Так что, если вздумаете изучать ее всерьез, обратитесь к более опытным педагогам… А теперь прощайте, мсье! Срок моей командировки истек. Дон Леандро-Перес, наверное, уже сердится… Итак, бьен рэстэ! Счастливо оставаться! И позвольте мне завершить мое представление традиционной формулой, которой заканчивали свои пьесы старинные испанские драматурги:

«Простите автору его ошибки!»

Хромой бес отвешивает опечаленным филоматикам насмешливый поклон и скрывается из виду.

— Мате, неужели он никогда не вернется?

— Как знать, Фило! Наше дело — ждать и надеяться…


Москва

1972 г.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика