Читаем Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков полностью

— Не клевещите на себя, дорогой мэтр Тарталья, — протестует Паскаль. — Просто вы жили на сто лет раньше, и время формулы сочетаний еще не пришло. А теперь попрошу нашего досточтимого председателя предоставить слово мэтру Лейбницу, ибо я горю желанием узнать, что сделал с арифметическим треугольником он.

— С величайшим удовольствием! — кивает Пифагор. — Тем более что я и сам давно дожидаюсь такого случая.

— Собственно говоря, я шел по стопам мэтра Паскаля, — уголками рта улыбается Лейбниц, — но мой треугольник составлен в обратном порядке. Так сказать, шиворот-навыворот. Прежде всего вместо целых чисел я взял дробные. А уж из этого вытекает и все остальное.

Он вытирает доску влажной тряпкой и пишет на ней другую таблицу.



— Этот свой треугольник я назвал гармоническим, — поясняет он.

— Превосходно! — горячо одобряет Пифагор. — Всегда говорил, что главное в мире — гармония.

— Вполне с вами согласен, — кланяется Лейбниц. — Но название это объясняется тем, что в правом и левом наклонных рядах моего треугольника стоят числа, которые принято называть гармоническим рядом: 1/1,1/2,1/3,1/4, 1/5, 1/6, 1/7… Особенность этого ряда заключается в том, что сумма его членов: 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7… не стремится ни к какому определенному числу — иначе говоря, она бесконечна. Не то что, скажем, другой ряд: 1/2 + 1/22 + 1/23 + 1/24 + 1/25 + … = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + …, сумма которого стремится к единице. Так вот, если в треугольнике мэтра Паскаля каждое число равно сумме двух чисел, стоящих НАД ним (справа и слева), то в моем треугольнике каждый член равен сумме чисел, стоящих ПОД ним (также справа и слева). Например 1/6 = 1/12 + 1/12. А потому, если в треугольнике мэтра Паскаля общий член выражается формулой Cnm, то в моем он выглядит так:

Вот, например, в третьем ряду сверху второй член таков:



— О-о-очень любопытно! — восклицает экспансивный Тарталья.

— Но это еще не все! — продолжает Лейбниц. — Выберем какой-нибудь наклонный ряд — скажем, второй: 1/2 1/6 1/12 1/20 1/30 1/42. Начнем вычисление с любого, хотя бы со второго его члена, то есть с 1/6. Тогда из сказанного о законе образования членов треугольника прежде следуют такие равенства:



Сложим почленно правые и левые части этих равенств. Все равные слагаемые в левых частях, имеющие противоположные знаки (плюс и минус), взаимно уничтожатся, и останется только первое число 1/6. Значит, 1/6 = 1/12 + 1/30 + 1/60 + 1/105 + … Но ведь правая часть этого равенства есть сумма всех чисел следующего за этим наклонного ряда, начиная с 1/12 и до бесконечности. И если в треугольнике мэтра Паскаля каждый член равен конечной сумме чисел, стоящих СЛЕВА и расположенных НАД данным числом, то в моем треугольнике каждое число равно бесконечной сумме чисел, стоящих СПРАВА и ПОД данным.



Вот, собственно, и всё.

Паскаль встает и горячо пожимает руку слегка утомленному оратору.

— Благодарю! Благодарю вас, многоуважаемый мэтр Лейбниц, от имени всех присутствующих, а от себя — особенно. Ваши бесконечные ряды доставили мне бесконечное удовольствие. Потому что бесконечность во всех ее проявлениях — предмет моего самого пристального внимания.

— Если так, — говорит Лейбниц, — попросите нашего достопочтенного председателя предоставить слово мэтру Ньютону, и вы получите удовольствие еще большее. Ибо он использовал вашу общую с мэтром Ферма формулу весьма неожиданно. Причем бесконечность в этом случает играет не последнюю роль.

Тут раздаются аплодисменты, и мэтр Исаак Ньютон, раскланиваясь, поднимается со своего места.

— Преждечем перейти к сути дела, — говорит он, — хочу обратить ваше внимание на одно обстоятельство. Подобно мэтрам Паскалю и Ферма, мы с мэтром Лейбницем также совершили одно и то же открытие. Это дифференциальное и интегральное исчисление. Надо, однако, признать, что открытие это — всего лишь завершение того, что начато нашими предшественниками. В первую очередь мэтрами Паскалем и Ферма, а также отсутствующим здесь мэтром Декартом.

Слова его встречены бурным одобрением. Все встают и долго рукоплещут.

— А теперь перейдем к вопросу, затронутому мэтром Лейбницем, — продолжает Ньютон, дождавшись тишины. — Должен снова оговориться. Формула разложения степени бинома носит мое имя не совсем справедливо. Ею пользовались задолго до меня. О моей роли в ее судьбе я как раз собираюсь рассказать. Для начала запишу эту формулу в ее обычном виде.

Он вытирает доску, и на ней появляется следующее выражение:


(a+b)n = an + Cn1an-1b + Cn2an-2b2 + Cn3an-3b3 + ... + bn


— Здесь, — поясняет он, — коэффициенты в каждом члене, как вам уже известно, есть сочетания из n по нулю, по единице, по два, по три и так далее, то есть

Перейти на страницу:

Все книги серии Филоматики

Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков
Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков

Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Математика

Похожие книги

Социология права
Социология права

Учебник предназначен для магистрантов, обучающихся по направлению подготовки 030900 Юриспруденция (квалификация (степень) «магистр»).В нем представлен учебный материал, рассчитанный на студентов магистратуры по направлению юриспруденция, конспект лекций, содержание и формы самостоятельной работы магистрантов, контролирующие материалы, практические задания, перечень литературы, предназначенный для углубленного изучения курса.Учебник подготовлен в соответствии с требованиями к обязательному минимуму и уровню подготовки магистра юриспруденции федерального государственного образовательного стандарта высшего профессионального образования по направлению подготовки 030900 Юриспруденция (квалификация (степень) «магистр»).

Виталий Вячеславович Романов , Владимир Иванович Шкатулла , Владимир Петрович Милецкий , Роман Леонидович Медников , Юрий Константинович Краснов

Детская образовательная литература / Юриспруденция / Учебники и пособия ВУЗов / Книги Для Детей
Эволюция на пальцах
Эволюция на пальцах

Хотели бы вы снова от звонка до звонка 10 лет отсидеть за школьной партой? Вряд ли… Школа запихивает в голову огромную кучу знаний, только вот раскиданы они беспорядочно и поэтому остаются невостребованными. Что вот вы помните из школьной программы про теорию эволюции? Обезьяны, Дарвин, гены… Эх, невелик набор, да и системы в нем нет.Эта книга знакомит детей и родителей, которые хотели бы рассказать своим детям о мире, с понятием эволюции. Причем речь идет не только о биологической эволюции, чего, наверное, можно было бы ожидать. Эволюция в более широком смысле происходит не только в мире живых организмов, но и в технике, в биохимии, в геологии, в мире звёзд, в психологии.Почему мир именно таков, как в нём возникают сложные структуры, по каким законам они развиваются? Этого не преподают в школе так, как надо бы преподавать — нанизывая на единую ось эволюционного понимания геологию, физику, химию, биологию и общественные науки. Если ваш ребёнок прочтет эту книгу, он окажется на голову выше прочих детей в школе. А вам будет приятно.

Александр Петрович Никонов

Детская образовательная литература
Основы рисунка для учащихся 5-8 классов
Основы рисунка для учащихся 5-8 классов

Учебник состоит из четырех книг, в которых в интересной и доступной форме рассказывается об основах художественного изображения и даются сведения об истории русского и зарубежного изобразительного искусства с древнейших времен до наших дней. Книга «Основы рисунка» рассматривает СЂРёСЃСѓРЅРѕРє как основу всех пластических искусств. Она включает изучение вопросов формообразования, передачи объема, пропорций, перспективы. Учащиеся РѕСЃРІРѕСЋС' азбуку СЂРёСЃСѓРЅРєР° в процессе практических заданий по рисованию портрета и фигуры человека, разнообразных натюрмортов, пейзажей и тематических композиций. Р' конце книги помещены: ответы на трудные РІРѕРїСЂРѕСЃС‹, «секреты и тайны» мастеров изобразительного искусства и рекомендуемая литература.Прим OCR: Выложена четвертая и последняя книга комплекта Р

Наталья Михайловна Сокольникова

Искусство и Дизайн / Культурология / Детская образовательная литература / Прочее / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей