Трансмембранные градиенты концентрации натрия и калия (т.е. разница в их концентрациях внутри и вне клеток) поддерживаются крошечным молекулярным двигателем, так называемым натриевым насосом, пронизывающим клеточную мембрану. Этот белок выкачивает избыточные ионы натрия, которые просачиваются в клетку, и заменяет их на ионы калия. Если насос прекращает работать, то градиенты концентраций ионов постепенно снижаются, и когда они полностью исчезают, перестают генерироваться электрические импульсы точно так же, как разряженный аккумулятор перестает приводить в действие стартер вашего автомобиля. Как следствие, органы чувств, нервы, мышцы, в общем, все клетки организма просто впадают в ступор. Именно это происходит, когда мы умираем. Поскольку у нас больше нет энергии, чтобы питать натриевый насос и поддерживать перепад концентраций ионов на клеточных мембранах, наши клетки быстро прекращают функционировать. И хотя внешние разряды электричества способны создавать электрические импульсы в нервных и мышечных клетках, они не могут восстановить градиент концентрации ионов на клеточных мембранах после того, как насосы перестают работать. Вот почему нам не удается реанимировать мертвое тело с помощью электричества, и вот почему искра жизни отличается от электричества, подаваемого в наши дома.
Поддержание градиентов концентрации ионов требует больших затрат энергии, поскольку электричество не бывает дешевым, даже когда оно генерируется в наших организмах. Только представьте себе, что около трети вдыхаемого нами кислорода и половины потребляемой пищи идет на создание градиентов концентрации ионов на клеточных мембранах. Один лишь мозг использует около 10% вдыхаемого кислорода для поддержания работы натриевого насоса и подзарядки аккумуляторов нервных клеток. Ничего не поделаешь — умственная деятельность очень энергоемка.
Замечательные физиологические жидкости
Почему наши клетки наполняются именно ионами калия, не совсем понятно. Проще всего предположить, что изначально клетки развивались в растворе с высоким содержанием калия. Если им ничто не мешает, липиды самопроизвольно образуют липосомы — крошечные наполненные жидкостью сферы, окруженные оболочкой из фосфолипидов. Не исключено, что такие липидные пленки представляли собой прототип мембран и липосомы, которые появлялись в результате их образования, были предшественниками настоящих клеток. Предположительно более трех с половиной миллиардов лет назад липосомы захватили самовоспроизводящиеся молекулы, такие как РНК или ДНК1, и превратились в первые клетки.
Жидкость внутри этих первых примитивных клеток неизбежно должна была иметь такой же состав, как и жидкость, которая их окружала. Таким образом, высокая внутренняя концентрация калия, характерная для всех клеток, — от простейших бактерий до самых сложных организмов — может отражать состав «первичного бульона». Загадка, однако, остается. Где находились эти древние воды, насыщенные калием? Одна из современных популярных теорий предполагает, что жизнь зародилась в «черных курильщиках» на дне океана — гидротермальных источниках, которые выбрасывают богатую минералами перегретую воду. С точки зрения физиолога, это маловероятно, поскольку в докембрийских морях, как и в нынешних, всегда было много натрия. Лично я придерживаюсь точки зрения Чарльза Дарвина, который считал, что жизнь зародилась миллиарды лет назад в «небольшом теплом пруду». Неглубокие заводи, где скапливались молекулы органических веществ и куда поступали ионы калия из окружающих горных или глинистых пород, вполне могли быть местом рождения первых клеток.
В какой-то момент очень далекого прошлого разрозненные клетки обнаружили, что совместная жизнь дает преимущества в естественном отборе, и в результате появились многоклеточные организмы. Поскольку внеклеточный раствор, в котором находятся наши клетки, богат натрием, есть вероятность, что первые многоклеточные организмы зародились в море, представляющем собою по большому счету раствор хлорида натрия (поваренной соли). Очень заманчиво думать, что внутриклеточные растворы и внеклеточные жидкости несут отпечаток нашей истории и говорят о том, где именно зародилась жизнь.
Пограничный контроль
Наличие клеточной мембраны дает множество преимуществ. Молекулы больше не рассеиваются случайным образом, а удерживаются внутри клетки и, что более важно, взаимодействуют друг с другом. Клетки могут становиться специализированными и выполнять разные функции, например образовывать мышечную ткань, печень и нервные волокна. Подобно крепостной стене средневекового города мембрана защищает клетку от токсинов в ближайшем окружении и ограничивает поступление и выделение различных веществ, поскольку липиды, из которых она выстроена, непроницаемы для большинства субстанций. В результате появляется необходимость в строго охраняемых воротах, которые впускают в клетку жизненно важные питательные вещества и выпускают из нее отходы жизнедеятельности.