Натриевые и калиевые каналы, которые открываются в ответ на изменение потенциала на клеточной мембране, являются ключевыми элементами механизма генерирования электрических сигналов в нашем мозге, сердце и мышцах. Когда нервные клетки находятся в состоянии покоя, и те и другие каналы плотно закрыты. При возбуждении нерва сначала натриевые каналы, а вслед за ними с небольшим отставанием и калиевые каналы начинают действовать, создавая кратковременное изменение мембранного потенциала – нервный импульс. Однако что инициирует этот процесс?
Важно то, что натриевые и калиевые каналы, участвующие в генерировании потенциала действия, чувствительны к потенциалу и открываются, если мембранный потенциал становится более положительным (деполяризация). Именно это происходит, когда нервная клетка возбуждается под влиянием входящего сигнала от другой нервной клетки или под действием внешнего электрического разряда. Чем больше при этом изменяется мембранный потенциал, тем больше открывается натриевых каналов и больше ионов натрия поступает в клетку. Помните, в соответствии с законом Ома изменение тока вызывает соответствующее изменение разности потенциалов? В нервной клетке натриевый ток сдвигает потенциал в положительном направлении, это приводит к открытию дополнительных натриевых каналов, что делает мембрану еще более положительной и приводит к открытию новых каналов, и т. д. Иными словами, возникает цикл с положительной обратной связью. Этим и объясняется взрывной, соответствующий закону «все или ничего» характер потенциала действия.
Два фактора возвращают мембранный потенциал к уровню покоя. Во-первых, натриевые каналы не бесконечно остаются открытыми при положительных мембранных потенциалах и в конечном итоге закрываются. Этот процесс называется инактивацией. Во-вторых, открываются калиевые каналы, и ионы калия уходят из клетки, восстанавливая дисбаланс зарядов и вновь сдвигая потенциал в отрицательном направлении. И это хорошо, что калиевые каналы открывают позже натриевых, ведь если бы они открывались одновременно, то натриевый и калиевый токи компенсировали бы друг друга, а значит, не было бы ни нервных импульсов, ни мыслей, ни действий.
Ужасная гадость
Значение натриевых и калиевых каналов для генерирования нервного импульса подчеркивается тем фактом, что яды пауков, моллюсков, актиний, лягушек, змей, скорпионов и множества других экзотических существ воздействуют именно на эти каналы и, таким образом, нарушают функционирование нервов и мышц. Многие яды очень специфичны и нацелены на какой-нибудь один вид ионных каналов. Ну вот мы и вернулись к капитану Куку и иглобрюху.
Тетродотоксин, содержащийся в печени и других тканях этой рыбы, является сильнодействующим блокатором натриевых каналов в нервной ткани и скелетных мышцах. Он вызывает онемение и покалывание губ и рта уже через 30 минут после попадания внутрь. Ощущение покалывания быстро распространяется на лицо и шею, потом на пальцы и ступни, а затем наступает паралич скелетных мышц – человек теряет равновесие, начинает бессвязно говорить и не может пошевелить ни руками, ни ногами. В конечном итоге наступает паралич дыхательных мышц. На сердце яд не влияет, поскольку в его клетках натриевые каналы другого типа. Токсин также не может преодолеть гематоэнцефалический барьер, поэтому, как это ни ужасно, обездвиженная и умирающая жертва остается в сознании. Противоядия не существует, и смерть обычно наступает в интервале от двух часов до суток. В 1845 г. врач на борту голландского брига Postilion, идущего мимо мыса Доброй Надежды, был свидетелем того, как два моряка «умерли в течение 17 минут после того, как съели печень рыбы». Вместе с тем пострадавшие могут полностью восстановиться, если поддерживать искусственное дыхание до тех пор, пока яд не будет выведен из организма. Это требует нескольких дней.
Картина японского художника-графика Хиросигэ «Желотохвост и фугу». Иглобрюх (фугу) – это рыба меньшего размера.