Читаем Искусственное солнце полностью

Конечно, это происходит не всегда. Как и в случае альфа-распада, сблизившиеся частички сначала принимаются беспорядочно «тыкаться» в электростатический барьер. Сходятся вместе они лишь, если успеют найти «лазейку» очень быстро — до того, как их разгонит в разные стороны электрическое отталкивание. И здесь тоже разыгрывается своеобразная «лотерея». Но чем ближе оказываются ядра, тем вероятнее их соединение. Имеет значение и упомянутое нами явление резонанса.

Что ж, ценой немалых трудностей мы наконец добыли Солнцу право на жизнь.

Запрет с ядерных реакций в его недрах снят.

Свети, светило, в оба!

Теперь посмотрим, каким образом реализует Солнце полученное разрешение.


3. ЯДРА СЛИВАЮТСЯ



СНАРУЖИ И ВНУТРИ


Английский астрофизик Литлтон заметил как-то: «Если кто-нибудь считает, что может найти относительные содержания элементов в звезде, исходя из состава ее атмосферы, то он с таким же успехом может полагать, что трубочист сделан из сажи».

Печальная шутка.

Выходит, что блестящие успехи спектрального анализа, разгадавшего химию солнечного одеяла, ничего не дают для познания состава солнечных недр?

В какой-то мере это соответствует действительности. Поверхность светила может представлять собой нечто вроде накипи на супе или пыли на портрете. Либо изнутри, либо извне на нее могут попадать излишки веществ, не характерных для солнечных глубин.

Впрочем, положение не так уж безнадежно, как кажется на первый взгляд.

В последнее время удалось доказать, что снаружи Солнце едва ли способно «запылиться». Вещество межзвездной среды гораздо чаще отбрасывается давлением солнечных лучей и очень редко падает на светило. Что же касается «накипи», то по ней опытный химик, посоветовавшись с опытным физиком, очевидно, сумеет определить и состав «супа».

Еще важнее другое соображение.

Солнце более или менее интенсивно перемешивается. Об этом свидетельствуют хотя бы протуберанцы — гигантские фонтаны на его поверхности.

Правда, наука до сих пор не разгадала полностью механизма такого перемешивания. Его не объяснишь простой конвекцией (перемещением вещества, подобным движению воды в нагревающемся чайнике). Как показывают расчеты, конвекция в солнечных недрах идет чересчур медленно. Мало вносит и явление диффузии (проникновение частичек одного вещества внутрь другого — например, распространение в воздухе аромата цветка). Однако сам факт перемешивания солнечного газа не вызывает сомнений, и разгадка причин этого явления — дело недалекого будущего.

Во всяком случае, если какие-то вещества в большом количестве находятся на поверхности светила, их, несомненно, должно быть немало и в его недрах.

Самый распространенный элемент солнечного одеяла, как указывает анализ фраунгоферовых линий, — водород.

И мы можем без всякой натяжки предположить, что тот же водород — обильнейшая составная часть глубинных слоев Солнца.

Недра светила наверняка насыщены водородом.

Водород — вот солнечное ядерное горючее, самый легкий из элементов, в противоположность самому тяжелому элементу — урану, освоением которого ознаменовалось начало атомного века на Земле.

При температуре в миллионы градусов водородные ядра, пользуясь «разрешением» квантовой механики, могут непосредственно взаимодействовать между собой и с ядрами других элементов.

Какие же из этих реакций сопровождаются выделением энергии?

Очевидно, те, что ведут к образованию более устойчивых ядер. Ведь мы знаем уже, почему освобождается атомная энергия: потому что ядра атомов перестраиваются в направлении к более устойчивым состояниям — состояниям с наименьшей потенциальной энергией, с наименьшей массой, приходящейся на один нуклон.

Солнечные ядерные процессы нетрудно отыскать, если взглянуть на кривую, изображенную на стр. 47.

Самые устойчивые ядра—с легчайшими нуклонами — разместились в нижней части кривой, в ее седловине. Спуск в седловину справа соответствует делению ядер тяжелых элементов, которое обсуждалось нами в главе «Пробужденные ядра». Именно на правой стороне кривой взрывается атомная бомба и работает атомная электростанция.

Но ведь спуститься в седловину можно не только справа, но и слева.

Какому же процессу соответствует спуск слева?

Очевидно, уже не делению, а, наоборот, слиянию, синтезу ядер. Двигаясь слева направо, мы переходим от менее сложных к более сложным ядрам.

В солнечных недрах мы отыскали обилие самых простых ядер — водородных. Они помещаются на нашей кривой левее всех других. Поэтому разумно предположить, что водородные ядра в глубинах светила соединяются с другими легкими ядрами, создавая при этом более устойчивые комбинации частиц и выделяя энергию.

Такая гипотеза была впервые выдвинута немецкими исследователями Р. Аткинсоном и Ф. Хаутерменсом в 1929 году — сразу же после того, как была открыта способность ядерных частиц, вопреки классической физике, пробивать «непробиваемое» и подходить вплотную друг к другу.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии