Предположим, решить проблему контроля в случае искусственного интеллекта довольно трудно, а по отношению к имитационным моделям несколько легче, — поэтому в сторону создания машинного интеллекта предпочтительнее двигаться через исследования по полной эмуляции головного мозга. Мы еще вернемся к вопросу о том, безопаснее ли этот путь по сравнению с развитием искусственного интеллекта. Но пока нужно отметить, что даже если принять это допущение, из него вовсе не следует, что нам нужно торопить появление технологии эмуляции мозга. Одну из причин мы уже обсудили — лучше, чтобы сверхразум был создан скорее позже, чем раньше, потому что тогда у нас будет больше времени для решения проблемы контроля и достижения прогресса по другим важным направлениям. Поэтому если есть уверенность, что эмуляция головного мозга станет предтечей развития ИИ, было бы контрпродуктивно спешить с развитием этой технологии.
Но даже если оказалось бы, что нам выгодно как можно быстрее создать технологию эмуляции головного мозга, из этого вовсе
Мы только что описали (гипотетический) случай того, что можно назвать технологической связкой11. Этот термин относится к условиям, в которых две технологии предсказуемо связаны во времени так, что развитие одной должно привести к развитию другой, в качестве или предтечи, или приложения, или следствия. Технологические связки следует принимать в расчет, когда мы используем принцип различного технологического развития: не очень правильно ускорять создание желательной технологии
В случае эмуляции головного мозга прочность технологической связки вызывает вопросы. Во второй главе мы заметили, что хотя для прогресса в этом направлении нужно будет создать множество новых технологий, каких-то ярких теоретических прорывов не потребуется. В частности, нам не нужно понимать, как работает биологический механизм познания, достаточно лишь знать, как создавать компьютерные модели небольших участков мозга, таких как различные виды нейронов. Тем не менее в процессе развития способности моделировать человеческий мозг будет собрано множество данных о его анатомии, что даст возможность значительно улучшить функциональные модели нейронных сетей коры головного мозга. И тогда появятся хорошие шансы создать нейроморфный ИИ раньше полноценной имитационной модели мозга12. Из истории нам известно множество примеров, когда методы ИИ брали начало в области нейробиологии и даже обычной биологии. (Например, нейрон Маккаллока–Питтса, перцептроны, или персептроны, и другие искусственные нейроны и нейронные сети появились благодаря исследованиям в области нейроанатомии; обучение с подкреплением инспирировано бихевиоризмом; генетические алгоритмы — эволюционной теорией; архитектура поведенческих модулей и перцепционная иерархия — теориями когнитивистики о планировании движений и чувственном восприятии; искусственные иммунные системы — теоретической иммунологией; роевой интеллект — экологией колоний насекомых и других самоорганизующихся систем; реактивный и основанный на поведении контроль в робототехнике — исследованиями механизма передвижения животных.) Возможно, еще важнее, что есть множество важных вопросов, имеющих отношение к ИИ, на которые можно будет ответить, лишь изучая мозг дальше. (Например, каким образом мозг хранит структурированные представления в кратковременной и долговременной памяти? Как решается проблема связывания? Что такое нейронный код? Как в мозгу представляются концепции? Есть ли некая стандартная единица механизма обработки информации в коре головного мозга, вроде колонки кортекса, и если да, то какова ее схема и как ее функциональность зависит от этой схемы? Как такие колонки соединяются и обучаются?)