Читаем Искусственный интеллект полностью

Теперь рассмотрим P(w | Ey). Определение этой условной вероятности, строго говоря, не является частью проблемы загрузки ценностей. Чтобы считаться разумным, ИИ уже должен уметь каким-то образом оценивать вероятность возникающих в реальном мире возможностей. Неспособная на это система не будет представлять опасности, о которой мы говорим. Однако существует риск, что эпистемология ИИ окажется достаточно хорошей, чтобы сделать его инструментально эффективным, и при этом недостаточно хорошей, чтобы правильно оценивать возможности, имеющие важное нормативное значение. (В этом смысле проблема определения P(w | Ey) связана с проблемой определения W). Определение P(w | Ey) также требует преодоления и других трудностей, в частности: как представлять неопределенность, связанную с логически невозможными событиями.

Упомянутые выше вопросы — как определить класс возможных действий, класс возможных миров и распределение вероятности, связывающее событие с классами возможных миров, — имеют довольно общий характер, поскольку те же самые вопросы возникают в случае широкого диапазона формально определяемых агентов. Остается рассмотреть вопросы, более специфические для метода обучения ценностям, а именно как определить U, V(U) и P(V(U) | w).

U — это класс функций полезности. U и W связаны, поскольку каждая функция полезности U(w) в U должна в идеале присваивать полезность каждого возможного мира w из W. Но U тоже должна быть довольно широкой в том смысле, что должна содержать много разных функций полезности — это повысит нашу уверенность, что хотя бы одна из них справится с задачей адекватного представления требуемых ценностей.

Причина написания P(V(U) | w), а не просто P(U | w), в том, чтобы подчеркнуть факт присвоения вероятностей утверждениям. Сама функция полезности утверждением не является, но ее можно трансформировать в утверждение. Например, можно сказать о некоторой функции полезности U(.), что она описывает предпочтения некоторого субъекта, или представляет утверждения некоторой этической теории, или что эту функцию полезности хотел бы использовать в системе ИИ принципал, если бы долго и глубоко размышлял на эту тему. Тогда «критерий ценности» V(.) может выглядеть как функция, которая в качестве аргумента использует функцию полезности U, а в качестве значения выдает утверждение, что U удовлетворяет критерию V. Определив утверждение V(U), мы, скорее всего, получим условную вероятность P(V(U) | w) из того же источника, который используем для получения и других распределений вероятности нашего ИИ. (Если мы уверены, что все существенные с нормативной точки зрения факты приняты во внимание при задании возможных миров W, тогда в каждом из возможных миров P(V(U) | w) будет равняться нулю или единице.) Остается вопрос, как определить V, — это обсудим далее в основном тексте.


20. Здесь приведены не единственные сложности метода обучения ценностям. Неясно, например, как наделить ИИ набором достаточно разумных исходных убеждений до того момента, когда он окрепнет настолько, что сможет воспротивиться попыткам программистов их скорректировать.


21. См.: [Yudkowsky 2001].


22. «Аве Мария» — термин из американского футбола. Так называется очень длинный пас вперед, сделанный в отчаянной ситуации — обычно когда время на исходе, — в надежде, что кто-то из игроков поймает мяч у зачетного поля противника и выполнит тачдаун.


23. Подход «Аве Мария» основан на идее, что сверхразум может формулировать свои предпочтения точнее, чем мы, люди, излагаем свои. Например, ИИ может сделать это при помощи кода. Поэтому если наш ИИ представляет другие сверхразумные системы в виде вычислительных процессов, воспринимающих окружающую их среду, то он сможет предположить, как эти системы могли бы реагировать на разные гипотетические стимулы, например «окна», выскакивающие в их поле зрения, с исходным кодом нашего ИИ и предложением сформулировать свои инструкции для нас в каком-то заранее выбранном и удобном для понимания формате. После этого наш ИИ мог бы изучить эти воображаемые инструкции (фактически из своей собственной модели, работающей по принципу «от обратного», в которой и существуют эти «другие» системы сверхразума) и выполнить их, поскольку изначально был мотивирован нами на это.


24. Альтернативный вариант — создать детектор, который в рамках модели мира нашего ИИ ищет представления физических структур, созданных сверхразумными цивилизациями. Затем мы могли бы исключить шаг определения функций предпочтения этих гипотетических сверхразумных систем и наделить наш ИИ конечными ценностями, предполагающими попытку скопировать те физические структуры, которые, как ему кажется, скорее всего создали бы эти гипотетические системы.

Перейти на страницу:

Похожие книги

Оптимизация BIOS. Полный справочник по всем параметрам BIOS и их настройкам
Оптимизация BIOS. Полный справочник по всем параметрам BIOS и их настройкам

Прочтя эту книгу, вы узнаете, что представляет собой BIOS, какие типы BIOS существуют, как получить доступ к BIOS и обновлять ее. Кроме того, в издании рассказано о неполадках в работе BIOS, которые приводят, например, к тому, что ваш компьютер не загружается, или к возникновению ошибок в BIOS. Что делать в этот случае? Как устранить проблему? В книге рассказывается об этом и даже приводится описание загрузки BIOS во флэш-память.Также вы научитесь использовать различные функции BIOS, узнаете, как оптимизировать их с целью улучшения производительности и надежности системы. Вы поймете, почему рекомендуемые установки являются оптимальными.После прочтения книги вы сможете оптимизировать BIOS не хуже профессионала!Книга предназначена для всех пользователей компьютера – как начинающих, которые хотят научиться правильно и грамотно настроить свою машину, используя возможности BIOS, так и профессионалов, для которых книга окажется полезным справочником по всему многообразию настроек BIOS. Перевод: А. Осипов

Адриан Вонг

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Книги по IT
Об интеллекте
Об интеллекте

В книге "Об интеллекте" Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему "память-предсказание" как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Джефф Хокинс предполагает, что идеи, сформулированные им в книге "Об интеллекте", лягут в основу создания истинного искусственного интеллекта - не копирующего, а превосходящего человеческий разум. Кроме этого книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.Книга рекомендуется всем, кого интересует устройство человеческого мозга и принципы его функционирования, а также тем, кто занимается проблемами разработки искусственного интеллекта.

Джефф Хокинс , Джеф Хокинс , Сандра Блейксли , Сандра Блэйксли

Зарубежная компьютерная, околокомпьютерная литература / Технические науки / Прочая компьютерная литература / Образование и наука / Книги по IT