1 из 100
18,8
1 из 1000
24,3
5 поколений по 1 из 10
< 65 (каждое следующее поколение дает меньший прирост)
10 поколений по 1 из 1
< 130 (каждое следующее поколение дает меньший прирост)
Суммарный предел (с учетом сложения всех вариантов, оптимизированных с точки зрения когнитивных способностей)
100 + [< 300 (каждое следующее поколение дает меньший прирост)]
В табл. 5 показан ожидаемый рост интеллектуальных способностей в зависимости от размера популяции, в которой производится отбор, исходя из предположения, что доступна вся информация об общем количестве аддитивных генетических вариантов, лежащих в основе наследуемости интеллекта. (Неполная информация снизит эффективность селекции, хотя и не в той степени, как может показаться непосвященным44.) Неудивительно, что отбор из большего числа эмбрионов дает лучшие результаты, хотя и не прямо пропорционально: выбор из ста эмбрионов не в пятьдесят раз предпочтительнее выбора из двух45.
Интересно, что снижение прироста коэффициента умственного развития значительно меньше, когда результаты отбора отражаются на следующем поколении. Таким образом, гораздо лучший результат получается, если последовательно отбирать 1 из 10 на протяжении десяти поколений (когда каждое следующее поколение состоит из отобранных на предыдущем этапе), чем если один раз выбрать 1 из 100. Естественно, главная проблема последовательного отбора в том, что на него требуется больше времени. Если на каждый этап нужно двадцать–тридцать лет, тогда даже проект из пяти последовательных поколений закончится в середине XXII столетия. Скорее всего, к этому времени человечество достигнет успеха с помощью более прямых и мощных методов генной инженерии (не говоря уже об искусственном интеллекте).
Правда, появилась новая идея, которая сможет значительно увеличить благотворную роль генетического скрининга перед имплантацией, если будет исследована настолько, что будет применена к человеку, — это получение жизнеспособных сперматозоидов и яйцеклеток из стволовых клеток эмбриона46. С помощью этого метода уже было получено фертильное потомство мышей и человеческие гаметоподобные клетки. По сути, впереди еще много нерешенных научных проблем, и как минимум предстоит повторить полученные на мышах результаты, но уже на людях, избежав при этом эпигенетических отклонений в полученных линиях стволовых клеток. По мнению исследователя Кацухико Хаяси, решить эти задачи для клеток человека удастся «может быть, лет через десять, а может быть, через пятьдесят»47.
С гаметами, полученными из стволовых клеток, у любой супружеской пары окажется гораздо больше возможностей для выбора. Сейчас при проведении ЭКО обычно создают меньше десяти эмбрионов. В случае получения гамет из стволовых клеток всего несколько клеток донора могут быть превращены в практически неограниченное число гамет, эмбрионы из которых будут подвергнуты генотипированию и секвенированию, чтобы выбрать наиболее многообещающие для имплантации. В зависимости от стоимости подготовки и скрининга одного эмбриона эта технология способна ощутимо увеличить селективные возможности, оказывающиеся в распоряжении родителей, которые выбрали процедуру ЭКО.
Но гораздо важнее другое: метод получения гамет из стволовых клеток позволит потратить на отбор из нескольких поколений гораздо меньше времени, чем требуется для созревания человека, поскольку предполагает использовать
Генотипирование и отбор эмбрионов, обладающих наилучшими необходимыми генетическими характеристиками.
Извлечение из этих эмбрионов стволовых клеток и превращение их в сперматозоид и яйцеклетку, созревающую в течение шести месяцев или даже менее49.
Оплодотворение яйцеклетки сперматозоидом и получение новых эмбрионов.
Повторение этого цикла до накопления заметных генетических изменений.
Таким способом можно осуществить отбор из десяти и более поколений всего за несколько лет. (Это долгая и дорогая процедура, однако ее достаточно провести лишь один раз, а не повторять для каждого ребенка. Итоговую совокупность клеток можно будет использовать для получения очень большого количества улучшенных эмбрионов.)
Как видно из табл. 5,