Вряд ли сегодня данные факты смогут произвести хоть какое-то впечатление. Но это обусловлено тем, что наши представления о стандартах несколько смещены, поскольку мы уже знакомы с теми выдающимися достижениями, которые появились после описываемых событий. В прежние времена, например, профессиональное умение шахматиста считалось высшим проявлением умственной деятельности человека. Некоторые специалисты конца 1950-х годов считали: «Если когда-нибудь получится создать удачную машину для игры в шахматы, возможно, люди постигнут суть своих интеллектуальных усилий»{57}. В наше время все выглядит иначе. Остается лишь согласиться с Джоном Маккарти, когда-то посетовавшим, что «стоит системе нормально начать работать, как ее сразу перестают называть искусственным интеллектом»{58}.
Однако появление интеллектуальных шахматных систем не обернулось тем торжеством разума, на которое многие рассчитывали, – и это имело определенное объяснение. По мнению ученых того времени – мнению, наверное, небезосновательному, – компьютер станет играть в шахматы наравне с гроссмейстерами, только когда будет наделен высоким
В других случаях изучения и применения искусственного интеллекта выявились проблемы более
В один ряд с исследованием инстинктивного поведения можно поставить логику здравого смысла и понимание естественных языков – явления, которые тоже оказались не самыми легкими для систем искусственного интеллекта. Сейчас принято считать, что решение подобных проблем на уровне, сопоставимом с человеческим, является AI-полной задачей[5] – то есть их сложность эквивалентна трудности разработки машин, таких же умных и развитых, как люди{63}. Иными словами, если кто-то
Высокий уровень игры в шахматы, как оказалось, достижим с помощью исключительно простого алгоритма. Возникает соблазн считать, будто и другие способности, например общее умение осмысливать или некоторые основные навыки программирования, можно также обеспечить за счет некоего удивительно несложного алгоритма. То обстоятельство, что в определенный момент оптимальная продуктивность достигается в результате применения сложного механизма, вовсе не означает, что ни один простой механизм не способен делать ту же работу так же хорошо и даже лучше. Птолемеева система мира (в центре Вселенной находится неподвижная Земля, а вокруг нее вращаются Солнце, Луна, планеты и звезды) выражала представление науки об устройстве мироздания на протяжении тысячи лет. Чтобы лучше объяснять характер движения небесных тел, ученые от века к веку усложняли модель системы, добавляя все новые и новые эпициклы, за счет чего повышалась точность ее прогнозов. Пришло время, и на смену геоцентрической пришла гелиоцентрическая система мира; теория Коперника была намного проще, а после доработки ее Кеплером стала и прогностически более точной{65}.