Читаем Искусственный интеллект. Этапы. Угрозы. Стратегии полностью

Рассмотрим гипотетическую гонку вооружений с применением ИИ — гонку, в которой несколько команд конкурируют за право первыми создать сверхразум[565]. Каждая из них сама решает, сколько инвестировать в безопасность, понимая, что ресурсы, потраченные на меры предосторожности, — это ресурсы, не потраченные на создание ИИ. В отсутствие согласия между соперниками (которого не удалось достичь из-за различия позиций или невозможности контролировать соблюдение договора) гонка может стать смертельно опасной, когда каждая команда тратит на безопасность лишь минимальные средства.

Производительность каждой команды можно представить как функцию ее возможностей (к которым относится и удача), штрафной функцией являются затраты на обеспечение безопасности. Первой создаст ИИ команда с наивысшей производительностью. Риски, связанные с появлением ИИ, зависят от того, сколько его создатели инвестировали в безопасность. В наихудшем сценарии все команды имеют одинаковые возможности. В этом случае победитель определяется исключительно по величине его капиталовложений в безопасность: выиграет команда, потратившая на меры предосторожности меньше всего. Тогда равновесие Нэша в этой игре достигается в ситуации, когда ни одна команда ничего не тратит на безопасность. В реальном мире такая ситуация будет означать возникновение эффекта храповика: одна из команд принимает на себя больший риск, опасаясь отстать от конкурентов, последние отвечают тем же — и так несколько раз, пока уровень риска не оказывается максимальным.


Возможности и риск

Ситуация меняется, когда возможности команд не одинаковы. Поскольку различия в возможностях являются более важным фактором по сравнению с затратами на обеспечение безопасности, эффект храповика слабеет: стимулов идти на больший риск в ситуации, когда это не повлияет на расстановку сил, гораздо меньше. Различные сценарии такого рода показаны на рис. 14, иллюстрирующем риски ИИ в зависимости от значимости такого параметра, как возможности разрабатывающих его команд. Инвестиции в безопасность лежат в диапазоне от 1 (в результате получаем идеально безопасный ИИ) до 0 (совершенно небезопасный ИИ). По оси x отображается относительная значимость возможностей команды для определения ее прогресса на пути создания ИИ по сравнению с инвестициями в безопасность. (В точке 0,5 уровень инвестиций в безопасность в два раза значимее возможностей; в точке 1 они равны; в точке 2 возможности в два раза значимее инвестиций в безопасность и так далее.) По оси y отображается уровень риска, связанный с ИИ (ожидаемая доля максимальной полезности, которую получает победитель.)




Рис. 14. Уровни риска в условиях гонки технологий искусственного интеллекта. На рисунке изображен уровень риска опасного ИИ для простой модели гонки технологий с участием а) двух или б) пяти команд в сочетании с относительной значимостью их возможностей (по сравнению с инвестициями в безопасность) для определения того, какой проект станет победителем. На диаграмме отражены три сценария: сплошная линия — нет информации об уровне возможностей; штриховой пунктир — закрытая информация о возможностях; точечный пунктир — открытая информация о возможностях.

Мы видим, что во всех сценариях опасность ИИ максимальна, когда возможности не играют никакой роли, и постепенно снижается по мере роста их значимости.


Сравнимые цели

Еще один способ снизить риск заключается в том, чтобы обеспечить командам большую долю в успехе друг друга. Если конкуренты убеждены, что второе место означает потерю всего, что им дорого, они пойдут на любой риск, чтобы обойти соперников. И наоборот, станут больше инвестировать в безопасность, если окажутся менее зависимыми от результатов гонки. Это означает, что нам нужно поощрять различные формы перекрестного инвестирования.


Количество конкурентов

Чем больше конкурирующих команд, тем более опасной становится гонка: у каждой из команд меньше шансов на то, чтобы прийти первой, соответственно, выше соблазн рисковать. Это видно, если сравнить позиции а и б на рис. 14: две команды и пять команд. В каждом сценарии риск растет с ростом числа конкурентов. Его можно снизить, если команды объединятся в небольшое количество конкурирующих коалиций.


Проклятие избыточной информации

Хорошо ли, если команды будут знать о своем месте в гонке (например, уровень своих возможностей)? И да, и нет. Желательно, чтобы о своем лидерстве знала сильнейшая команда (это будет означать, что отрыв от конкурентов позволит ей больше думать о безопасности). И нежелательно, чтобы о своем отставании знали остальные (поскольку это подтвердит их решимость ослабить меры предосторожности в надежде нагнать конкурентов). Хотя на первый взгляд может показаться, что компромисс возможен, модели недвусмысленно показывают, что информация — это плохо[566]. На рис. 14 (а и б) отражены три сценария: прямая линия соответствует ситуации, в которой ни одна из команд не имеет информации о возможностях участников гонки, включая свои собственные; штриховой пунктир соответствует ситуации, в которой команды знают только о своих собственных возможностях (тогда они готовы идти на дополнительный риск в случае, если их возможности низки); точечный пунктир показывает, что происходит, если все команды осведомлены о возможностях друг друга (они могут пойти на дополнительный риск в случае, если их возможности близки). С каждым ростом уровня информированности гонка обостряется.

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература