Читаем Искусственный интеллект. Этапы. Угрозы. Стратегии полностью

Мы неслучайно надеемся, что необходимые инновационные технологии пусть не в ближайшем будущем, но когда-нибудь станут достижимыми. У нас уже существуют более или менее точные компьютерные модели многих типов биологических нейронов и нейронных процессов. Разработано программное обеспечение для распознавания образов, способное отследить аксоны и дендриты в стопке двумерных изображений (хотя их точность еще предстоит повысить). Имеются средства съемки с нужным разрешением — с помощью сканирующего туннельного микроскопа можно «увидеть» отдельные атомы, причем с разрешением гораздо выше необходимого. Полная эмуляция головного мозга человека потребует весьма мощного технологического прорыва — и это отлично понимают все исследователи; однако имеющийся на сегодняшний день багаж знаний и возможностей дает все основания полагать, что нет никакого непреодолимого барьера для появления нужных технологий[119]. Например, необязательно иметь микроскопы с высочайшим разрешением — должны быть просто очень мощные микроскопы. Слишком затратно по времени и стоимости использовать для съемки исследуемого материала туннельные сканирующие микроскопы с атомным разрешением. Наверное, более оправданным стало бы применение электронных микроскопов с меньшим разрешением, что, естественно, потребует лучшего обеспечения видимости важных элементов, скажем, синаптической микроструктуры, — в свою очередь, это повлечет разработку новых методов подготовки и окраски кортикальной ткани. Уже пора задуматься над такими вопросами, как расширение нейровычислительных библиотек, усовершенствование автоматизированной обработки образов и интерпретации результатов сканирования.

Осуществимость полной эмуляции головного мозга человека не зависит от теоретических разработок так сильно, как, скажем, создание искусственного интеллекта; загрузка разума в основном возлагается на технологические возможности. Требования к технологиям определяются лишь уровнем абстракции, на котором происходит эмулирование. В этом смысле придется искать баланс между теорией и технологией. С одной стороны, чем слабее наше сканирующее оборудование, чем менее производительны компьютеры, тем меньше мы можем рассчитывать на низкоуровневое имитационное моделирование физико-химических процессов головного мозга и тем больше потребуется теоретического понимания вычислительной архитектуры, которую мы стремимся моделировать, чтобы создать более абстрактные представления значимой функциональности[120]. С другой стороны, при достаточном количестве и качестве передовой сканирующей техники и сверхмощных вычислительных средств нам вряд ли понадобятся сильная теоретическая подготовка и профессиональные знания о происходящих в мозгу процессах — ведь при условии «технологического изобилия» мы сможем решить задачу моделирования методом простого перебора — то есть элементарно «в лоб». Правда, есть третий вариант: давайте проведем эмуляцию мозга на уровне элементарных частиц, то есть отнесемся к мозгу как к квантовомеханической системе и решим нашу проблему с помощью уравнения Шрёдингера. В этом случае — совсем крайнем по своей маловероятности — нам придется вовсе абстрагироваться от биологической модели и опираться исключительно на существующие знания физики. Но все размышления на тему элементарных частиц умозрительны, поскольку сразу возникает вопрос о требованиях, которые будут предъявляться к вычислительной мощности и обработке данных, — условия для нас совершенно невыполнимые. Гораздо более правдоподобным вариантом могла бы стать эмуляция отдельных нейронов и их матрицы смежности с построением структуры их дендритных деревьев и, возможно, каких-то статических переменных, описывающих индивидуальные синапсы; при этом, не трогая по отдельности молекулы-нейротрансмиттеры, возможно будет моделировать изменение их концентрации в виде грубой структуры.

Чтобы оценить осуществимость полной эмуляции головного мозга человека, необходимо определить критерии удачного завершения процесса. Вряд ли ученые стремятся создать детальную и точную модель мозга, которую можно было бы подвергать воздействию последовательности определенных стимулов, и на основании результатов точно предсказывать «поведение» биологического мозга. Безусловно, нет. Они хотят всего лишь воспроизвести вычислительные функциональные свойства мозга в таком объеме, чтобы использовать полученный эмулятор для выполнения интеллектуальных задач. При подобном целеполагании можно не принимать во внимание многие компоненты биологического мозга с его довольно сложными и запутанными структурами.

Чтобы понять, насколько удачно проведена эмуляция, следует оценить, в какой степени удалось сохранить церебральные функции обработки информации в полученном эмуляторе. Для этого придется провести более глубокий анализ. Например, можно выделить следующие виды эмуляторов мозга:

1)-высокоточная модель — сохраняет всю совокупность знаний, навыков, возможностей и ценностей биологического мозга;

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература