Читаем Искусственный интеллект. Этапы. Угрозы. Стратегии полностью

Однако методы, хорошо зарекомендовавшие себя при разработке тех первых, практически демонстрационных, образцов интеллектуальных систем, не удавалось применить в тех случаях, когда речь заходила о широком спектре проблем и более трудных задачах. Одна из причин заключалась в комбинаторном взрыве, то есть скачкообразном росте количества возможных вариантов, которые приходилось изучать с помощью средств, основанных на простейшем методе перебора. Этот метод хорошо себя проявил на примере несложных задач, но не подходил для чуть более трудных. Например, для решения теоремы с доказательством длиной в пять строк системе логического вывода с одним правилом и пятью аксиомами требовалось просто пронумеровать все 3125 возможных комбинаций и проверить, какая из них приведет к нужному заключению. Исчерпывающий поиск также работал для доказательств длиной в шесть или семь строк. Но поиск методом полного перебора возможных вариантов начинал пробуксовывать, когда проблема усложнялась. Время для решения теоремы с доказательством не в пять, а пятьдесят строк будет отнюдь не в десять раз больше: если использовать полный перебор, то потребуется проверить 550 ≈ 8,9 × 1034 возможных последовательностей — вычислительно немыслимая задача даже для самого сверхмощного компьютера.

Чтобы справиться с комбинаторным взрывом, нужны алгоритмы, способные анализировать структуру целевой области и использовать преимущества накопленного знания за счет эвристического поиска, долгосрочного планирования и свободных абстрактных представлений, — однако в первых интеллектуальных системах все перечисленные возможности были разработаны довольно плохо. Кроме того, из-за ряда обстоятельств — неудовлетворительные методы обработки неопределенности, использование нечетких и произвольных символических записей, скудость данных, серьезные технические ограничения по объему памяти и скорости процессора — страдала общая производительность этих систем. Осознание проблем пришло к середине 1970-х годов. Осмысление того, что многие проекты никогда не оправдают возложенных на них ожиданий, обусловило приход первой «зимы искусственного интеллекта»: наступил период регресса, в течение которого сократилось финансирование и вырос скептицизм, а сама идея искусственного интеллекта перестала быть модной.

Весна вернулась в начале 1980-х годов, когда в Японии решили приступить к созданию компьютера пятого поколения. Страна собиралась совершить мощный бросок в будущее и сразу выйти на сверхсовременный уровень технологического развития, разработав архитектуру параллельных вычислительных систем для сверхмощных компьютеров с функциями искусственного интеллекта. Это была хорошо финансируемая правительственная программа с привлечением крупных частных компаний. Появление проекта совпало со временем, когда японское послевоенное чудо приковывало к себе внимание всего западного мира: политические и деловые круги с восхищением и тревогой следили за успехами Японии, стремясь разгадать секретную формулу ее экономического взлета и надеясь воспроизвести ее у себя дома. Как только Япония решила инвестировать огромные средства в изучение искусственного интеллекта, ее примеру последовали многие высокоразвитые страны.

В последующие годы широкое распространение получили экспертные системы, призванные заменить специалистов-экспертов при разрешении проблемных ситуаций. Они представляли собой автоматизированные компьютерные системы, программы которых базировались на наборе правил, позволяющих распознавать ситуации и делать простые логические умозаключения, выводя их из баз знаний, составленных специалистами в соответствующих предметных областях и переведенных на формальный машинный язык. Были разработаны сотни таких экспертных систем. Однако выяснилось, что от небольших систем толку мало, а более мощные оказались слишком громоздкими в применении и дорогостоящими в разработке, апробации и постоянном обновлении. Специалисты пришли к выводу, что непрактично использовать отдельный компьютер для выполнения всего одной программы. Таким образом, уже к концу 1980-х годов этот период подъема тоже выдохся.

Японский проект, связанный с появлением компьютера пятого поколения, в принципе, провалился, как и аналогичные разработки в США и Европе. Наступила вторая зима искусственного интеллекта. Теперь маститый критик мог вполне обоснованно посетовать, что, мол, «вся история исследований искусственного интеллекта вплоть до сегодняшнего дня складывается из череды отдельных эпизодов, когда, как правило, очень умеренная удача на исключительно узком участке работы довольно скоро оборачивается полной несостоятельностью на более широком поле, к исследованию которого, казалось бы, поощрял первоначальный успех»[26]. Частные инвесторы старались держаться на почтительном расстоянии от любых начинаний, имевших малейшее отношение к проблеме искусственного интеллекта. Даже в среде ученых и финансировавших их организаций сам этот термин стал нежелательным[27].

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература