Читаем Искусственный интеллект и Машинное обучение. Основы программирования на Python полностью

ИИ может быть узким (narrow AI) либо его еще иногда называют слабым, то есть когда машина может справляться только с ограниченным видом задач, лучше чем человек. Например, распознать, что на картинке или сыграть в шахматы и выиграть. Именно на этом этапе развития ИИ мы сейчас находимся. Следующий этап – это общий ИИ (general AI), когда ИИ может решить любую интеллектуальную задачу так же хорошо, как человек. И финальный этап – это сильный ИИ, когда ИИ справляется с большинством задач намного лучше, чем человек.

Как мы уже сказали, ИИ – это достаточно обширная область знаний. Она включает в себя следующие направления.

1. Обработка естественного языка, когда компьютер должен понимать, что написано, и выдать правильный и релевантный ответ. Сюда же входят переводы текстов и даже составление сложных текстов компьютерами.

2. Экспертные системы – это компьютерные системы, которые имитируют способность принятия решений человеком, в основном с помощью правил «если – то», нежели с использованием какого-то кода.

3. Речь – компьютер должен распознавать речь людей и сам уметь разговаривать.

4. Компьютерное зрение – компьютеры распознают те или иные объекты на изображении или при движении.

5. Робототехника – также очень популярное направление ИИ, создание роботов, которые могут выполнять различные функции, в том числе двигаться и общаться, преодолевать препятствия.

6. Автоматическое планирование – обычно используется автономными роботами и беспилотными аппаратами, когда им необходимо выполнять последовательность действий, особенно когда это происходит в многомерном пространстве и когда им приходится решать комплексные задачи.

7. И наконец, Машинное обучение.



Машинное обучение появилось после того, как долгое время мы пытались сделать компьютер умнее, давая ему все больше и больше правил и инструкций. Однако, это оказалось не такой уж и хорошей идеей, потому что отнимало много времени, и мы не могли придумать правила для каждой детали и для каждой ситуации.

И тогда ученые пришли к выводу, а почему бы не написать алгоритмы, которые учатся самостоятельно на основе опыта. Так родилось машинное обучение. То есть, когда машины могут учиться на основе больших наборов данных вместо явно написанных инструкций и правил.

МО – это область ИИ, когда мы тренируем наш алгоритм с помощью набора данных, делая его все лучше, точнее и более эффективным. При машинном обучении наши алгоритмы обучаются на основе данных, но без заранее запрограммированных инструкций. То есть мы даем машине большой набор данных, и говорим правильные ответы, и потом машина сама создает алгоритмы, которые бы удовлетворяли этим ответам. И с каждым новым дополнительным объемом данных, машина учится дальше и еще больше улучшает свою точность прогнозов.



Например, если взять пример шахмат, то в примере с ИИ, мы даем машине много логических правил, и на их основе она учится играть. А в примере с МО, мы даем машине много примеров прошлых игр, она изучает их и анализирует почему одни игроки выигрывали, а другие проигрывали, какие шаги вели к успеху, а какие – к поражению. И на основе этих примеров, машина сама создает алгоритмы и правила как надо играть в шахматы, чтобы выиграть.

Другой пример, предположим, нам надо понять, как будет вести себя цена квартиры при изменении тех или иных параметров, например, в зависимости от площади, удаленности от метро, этажности и прочих факторов. Мы загружаем данные с разными квартирами, и компьютер создает модель, по которой можно будет предсказать цены в зависимости от этих факторов. Мы можем регулярно обновлять эти данные, и наш алгоритм будет обучаться на основе этих новых данных и каждый раз будет усовершенствовать свою точность по предсказанию цены в зависимости от параметров.



Идем дальше. Глубокое обучение – это подотрасль МО, то есть здесь тоже компьютер обучается, но обучается немного по-другому, чем в стандартном МО. В ГО используются нейронные сети (НС), которые представляют собой алгоритмы, повторяющие логику нейронов человеческого мозга. Большие объемы данных проходят через эти нейронные сети, и на выходе выдаются уже готовые ответы. Нейронные сети намного сложнее, чем обычное машинное обучение, и мы можем не всегда понимать, какие факторы имеют больший вес на тот или иной ответ, но использование нейронных сетей также помогает решать очень запутанные задачи в наше время. Иногда нейронные сети называют даже черным ящиком, потому что мы не всегда можем понять, что происходит внутри этих сетей.



Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Справочник по параметрам BIOS
Справочник по параметрам BIOS

В справочнике в алфавитном порядке приведено описание большинства параметров современных BIOS. В краткой форме описаны большинство настроек BIOS, даны рекомендуемые значения для различных конфигураций компьютеров. Также рассказано, что представляет собой BIOS, какие типы BIOS существуют, как получить доступ к BIOS и обновлять ее.Кроме того, вы научитесь использовать различные функции BIOS, узнаете, как оптимизировать их с целью улучшения производительности и надежности системы.Для более глубокого понимания работы BIOS и детального рассмотрения ее функций рекомендуем обратиться к книге «Оптимизация BIOS. Полное руководство по всем параметрам BIOS и их настройкам» А. Вонга.Книга предназначена для всех пользователей компьютера – как начинающих, которые хотят научиться правильно и грамотно настроить свою машину, используя возможности BIOS, так и профессионалов, для которых книга окажется полезным справочником по всему многообразию настроек BIOS. Перевод: А. Осипов

Адриан Вонг

Прочая компьютерная литература / Книги по IT
Основы объектно-ориентированного программирования
Основы объектно-ориентированного программирования

Фундаментальный учебник по основам объектно-ориентированного программирования и инженерии программ. В книге подробно излагаются основные понятия объектной технологии – классы, объекты, управление памятью, типизация, наследование, универсализация. Большое внимание уделяется проектированию по контракту и обработке исключений, как механизмам, обеспечивающим корректность и устойчивость программных систем.В книге Бертрана Мейера рассматриваются основы объектно-ориентированного программирования. Изложение начинается с рассмотрения критериев качества программных систем и обоснования того, как объектная технология разработки может обеспечить требуемое качество. Основные понятия объектной технологии и соответствующая нотация появляются как результат тщательного анализа и обсуждений. Подробно рассматривается понятие класса - центральное понятие объектной технологии. Рассматривается абстрактный тип данных, лежащий в основе класса, совмещение классом роли типа данных и модуля и другие аспекты построения класса. Столь же подробно рассматриваются объекты и проблемы управления памятью. Большая часть книги уделена отношениям между классами – наследованию, универсализации и их роли в построении программных систем. Важную часть книги составляет введение понятия контракта, описание технологии проектирования по контракту, как механизма, обеспечивающего корректность создаваемых программ. Не обойдены вниманием и другие важные темы объектного программирования – скрытие информации, статическая типизация, динамическое связывание и обработка исключений. Глубина охвата рассматриваемых тем делает книгу Бертрана Мейера незаменимой для понимания основ объектного программирования.

Бертран Мейер

Прочая компьютерная литература / Книги по IT