В 1951 г. ученый-когнитивист Марвин Мински (1927–2016) и его студент Дин Эдмундс сконструировали
Как следует из этих примеров, обучение с подкреплением – это разновидность машинного обучения, которое предполагает прохождение определенных состояний в поисках вознаграждения или максимизации ожидаемого совокупного вознаграждения. «Ученик» (программный агент) совершает множество действий, чтобы выяснить, какие из них приносят наибольшее вознаграждение. Сейчас обучение с подкреплением часто совмещают с глубоким обучением, при котором задействуется крупная нейросеть, зачастую для распознавания закономерностей в данных. При обучении с подкреплением системы и машины учатся без заранее сформулированных инструкций. Это означает, что беспилотные автомобили, промышленные роботы и дроны развивают и совершенствуют свои навыки методом проб и ошибок, постепенно накапливая опыт. Однако широко применять подобный метод проблематично: он требует огромных массивов данных и тренировочных симуляций.
СМ. ТАКЖЕ Крестики-нолики (ок. 1300 до н. э.), Искусственные нейронные сети (1943), Машинное обучение (1959), Победа над чемпионом мира по коротким нардам (1979), Шашки и искусственный интеллект (1994)
Обучение с подкреплением – метод обучения программных агентов полезным действиям для максимизации общего вознаграждения. Среди ранних примеров применения метода – решение для прохождения лабиринтов, а также системы для игры в шашки, крестики-нолики и короткие нарды.
Распознавание речи. 1952
Недавно журнал
Теория и практика
Технологии машинного распознавания речи значительно эволюционировали. Поначалу в них использовалась скрытая марковская модель – статистический метод предсказания того, соответствует ли звук слову. В наше время для достижения высокой точности распознавания применяется глубокое обучение (то есть искусственные нейросети с множеством слоев). Например, система распознавания речи может слышать звуковой поток в шумной среде и строить «догадки» о том, что говорится, определяя вероятность появления разных слов и фраз, с которыми она сталкивалась в тренировочных текстах. Специальные приложения могут располагать данными о вероятности использования той или иной фразы и определять, например, следует ли ранжировать слова «аневризма брюшной аорты» высоко или низко, с учетом того, услышаны ли они системой голосового ввода в рентгеновском кабинете или автомобильной системой, ожидающей простой команды.
Сегодня многочисленные цифровые помощники – в наших домах, автомобилях, офисах и мобильных телефонах – отвечают на голосовые команды и вопросы и пишут заметки под нашу диктовку. Речевой ввод также облегчает жизнь слабовидящим и людям с ограниченными физическими возможностями.
СМ. ТАКЖЕ Синтез речи (1939), Искусственные нейронные сети (1943), Обработка естественного языка (1954)
Устройство
Обработка естественного языка. 1954