Читаем Искусственный интеллект на службе бизнеса полностью

Машинный прогноз оказался точнее человеческого. Например, согласно прогнозу, из 1 % обвиняемых, причисленных машиной к самым опасным, 62 % совершат преступление, будучи отпущенными под залог. Судьи же (у которых не было доступа к прогнозам машины) выпустили почти половину из них. Прогноз оказался почти идеальным – 63 % обвиняемых действительно совершили повторные преступления, а половина из них не явилась на следующее заседание суда. Из них 5 % совершили изнасилования и убийства.

Если бы судьи последовали рекомендациям машины, то могли бы отпустить то же количество обвиняемых и снизить показатель преступности среди выпущенных под залог на 75 %. Или сохранить показатели преступности и посадить за решетку вдвое меньше обвиняемых[47].

В чем же дело? Почему прогноз судей так заметно расходится с машинным? Одна из причин, возможно, в том, что судьи пользуются недоступной алгоритмам информацией, скажем, внешностью и поведением обвиняемых в суде. Она бывает полезной, но может и вводить в заблуждение. С учетом высоких показателей совершения преступлений выпущенными под залог разумно заключить, что последнее более вероятно; прогнозы судей никуда не годятся. В исследовании достаточно и других подтверждений данного неутешительного вывода.

Прогностика в такой ситуации представляет сложность для человека из-за неоднозначных факторов, влияющих на показатели преступности. Прогностические машины гораздо лучше людей определяют факторы сложных взаимодействий отдельных показателей.

Получается, когда вы уверены, что прошлые преступления обвиняемого повышают риск побега, машина подсчитывает, что это произойдет только в случае, скажем, если он не сможет найти работу в течение определенного периода. Иными словами, эффект взаимодействия может быть важнее, а поскольку многоплановость таких взаимодействий возрастает, способность человека к составлению точных прогнозов снижается.

Отклонения не просто проявляются время от времени в медицине, бейсболе и суде, это неотъемлемая часть любой профессиональной деятельности. Специалисты обнаружили, что и менеджеры, и рабочие прогнозируют часто – причем с полной уверенностью, – не догадываясь, что их предположения несостоятельны. Занимаясь исследованием 15 агентств по найму неквалифицированных рабочих, экономисты Митчелл Хоффман, Лиза Кан и Даниэль Ли обнаружили: когда решения по найму принимались на основании объективного проверяемого теста и обычного собеседования, стаж работы на следующем месте был выше на 15 %, чем в результате одного только собеседования[48]. А перед менеджерами при этом стояла задача по увеличению стажа.

Достаточно объемный тест включал вопросы на проверку когнитивных способностей и соответствие обязанностям. А после того как свободу действий менеджеров ограничили – запретили аннулировать баллы при неудовлетворительных результатах теста, – стаж дополнительно вырос и доля увольнений по собственному желанию снизилась. Итак, даже с учетом поставленной задачи по увеличению продолжительности стажа и при наличии весьма точных машинных прогнозов менеджеры все же умудрялись делать неверные предположения.

Слабые стороны машин в прогнозировании

Бывший министр обороны Дональд Рамсфелд однажды сказал:

«Есть известные известные – вещи, в знании которых мы уверены. Еще есть известные неизвестные – когда мы знаем, что есть кое-что, чего мы не знаем. Но есть еще и неизвестные неизвестные – мы их не знаем и не подозреваем об их существовании. Если посмотреть на историю нашей страны и других свободных государств, самой сложной является последняя категория»[49].

Это обеспечивает удобную структуру понимания условий, на которых «спотыкаются» прогностические машины. Первое: «известные известные» – это наличие большого объема данных, когда есть уверенность в правильности прогноза. Второе: «известные неизвестные» – когда данных мало и очевидно, что сделать прогноз будет сложно. Третье: «неизвестные неизвестные» – события, не знакомые по опыту или не имеющиеся в данных и тем не менее вероятные, поэтому прогнозировать их трудно, хотя мы можем об этом не подозревать. И наконец, не упомянутая Рамсфелдом категория – «неизвестные известные»: когда подтвержденный в прошлом опыт представляет собой результат неизвестного или ненаблюдаемого фактора, изменяющегося со временем, из-за чего прогноз становится ненадежным. Прогностические машины ошибаются именно в тех случаях, когда не могут исходить из хорошо известных рамок статистики.

Известные известные

Перейти на страницу:

Все книги серии МИФ. Бизнес

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература