• ИИ представляет собой подрывную технологию, поскольку у действующих компаний экономические стимулы к его освоению слабее, чем у стартапов. Качество оснащенных ИИ продуктов поначалу невысокое – чтобы прогностическая машина работала так же эффективно, как жестко запрограммированные устройства, подчиняющиеся человеку, ей требуется время на обучение. При этом запущенный ИИ непрерывно учится и совершенствуется, оставляя позади своих неинтеллектуальных конкурентов. У давно существующих компаний возникает соблазн выждать, оставаясь в стороне и наблюдая за прогрессом ИИ в своей сфере. Для некоторых такой подход приемлем, но другим фирмам впоследствии окажется сложно догнать конкурентов, преуспевших в обучении и внедрении инструментов ИИ.
• Одно из стратегических решений касается времени, когда можно выпускать инструменты ИИ в реальный мир. Сначала их обучают внутри компании без привлечения пользователей. Но в реальных условиях коммерческого применения с большим притоком данных они учатся быстрее. Преимущество раннего выпуска – быстрое обучение, а издержки – более высокий риск (для имиджа компании или безопасности пользователя из-за недостаточно обученного ИИ). В некоторых случаях, например с Google Inbox, решение очевидно: плюсы быстрого обучения перевешивают издержки низкой эффективности. Но в других сферах, таких как автономное вождение, компромисс между преимуществами скорой коммерциализации продукта и высокой ценой ошибки слишком раннего выпуска найти не так просто.
Глава 16. Управление рисками ИИ
Латания Суини – бывший технический руководитель Федеральной торговой комиссии США, а ныне профессор Гарвардского университета. Однажды коллега искал в Google статью, вбил фамилию Суини в поисковую строку и увидел в результатах сообщение о ее аресте[145]
. Удивленная Латания кликнула на ссылку, заплатила за просмотр и прочитала о том, что ей и так известно: никакого ареста не было. Заинтригованная, она ввела имя коллеги Адама Таннера, и появилась ссылка на ту же компанию, но без информации об аресте. Задав еще несколько запросов, она пришла к предположению, что сообщение об аресте появлялось в запросах на афроамериканские имена. После планомерной проверки гипотезы Суини сделала вывод, что если искать имена, принадлежащие темнокожим, например Лакиша или Тревон, то вероятность появления информации об аресте на 25 % выше, чем при поиске обычных имен, таких как Джилл или Джошуа[146].Такие отклонения чреваты неприятными последствиями. Предположим, работодатель ищет информацию о соискателе. Увидев заголовок вроде «Латания Суини арестована?», он может усомниться в кандидатуре. Это дискриминация и явная клевета.
Почему это случилось? Google предоставляет ПО, позволяющее рекламодателям тестировать и использовать конкретные ключевые слова. И они могут создавать рекламу в соответствии с классификацией имен по расовому признаку, хотя Google это отрицала[147]
. Возможно, что такая закономерность возникла как следствие алгоритмов Google, продвигающих рекламу с высоким «показателем качества» (на которую вероятнее всего кликнут). Здесь могли сыграть роль прогностические машины. Например, если бы потенциальные работодатели, вбив имя в поиск, с большей вероятностью кликали на сообщение об аресте с афроамериканскими именами, чем с другими, то показатель качества размещения таких сообщений рядом с этими ключевыми словами вырос бы. Google не собиралась проявлять дискриминацию, но ее алгоритмы могли усугубить существующие в обществе предубеждения. Таков пример риска, связанного с применением ИИ.Риск ответственности
Расовая дискриминация в обществе выступает потенциальной проблемой для Google и подобных ей компаний. Им грозит кара за ее проявление. К счастью, когда тревогу бьют люди уровня Суини, Google быстро реагирует, находит и исправляет ошибки.
Дискриминация не всегда явная. В 2017 году экономисты Аня Ламбрехт и Кэтрин Такер провели исследование и обнаружили дискриминацию по половому признаку в рекламе Facebook[148]
. Они разместили рекламу вакансий в области науки, технологий, инжиниринга и математики. Оказалось, что Facebook реже показывал рекламу женщинам, и не потому, что они с меньшей вероятностью заинтересуются или проживают в странах с дискриминированным рынком труда. Наоборот, дискриминированным оказался рекламный рынок. Поскольку молодые женщины входят в ценную демографическую группу, показ рекламы для них стоит дороже, поэтому алгоритмы показывают рекламу так, чтобы доход от размещения был максимальным. Если вакансии в равной степени заинтересуют и женщин, и мужчин, то выгоднее показывать рекламу тем, для кого она дешевле: мужской аудитории.Профессор бизнес-школы Гарварда, экономист и юрист Бен Эдельман объяснил, чем это чревато для работодателей и Facebook.