Например, в нашей лаборатории мы даем маленьким детям «детектор бликетов»: это новое устройство, ничего подобного они раньше не видели. Это коробка, которая начинает мерцать огнями и проигрывать музыку, когда в нее кладут какие-то предметы (но не любые, а конкретного типа). Мы даем детям лишь один или два примера того, как работает машина, показываем, что она реагирует, скажем, на два красных кубика, но не на сочетание зеленого и желтого кубиков. Даже полуторагодовалые малыши мгновенно улавливают основополагающий принцип (два предмета должны быть одинаковыми, чтобы устройство сработало) и обобщают этот принцип, когда сталкиваются с чем-то новым; к примеру, они выберут два предмета одинаковой формы, чтобы машина сработала. В других экспериментах мы убедились, что дети способны даже осознать некие незримые свойства машины и понять, что машина работает по какому-то абстрактному логическому принципу[172].
Все это проявляется и в повседневном обучении детей. Маленькие дети быстро осваивают абстрактные «интуитивные» теории биологии, физики и психологии, во многом воспроизводя методики взрослых ученых и при относительно небольшом объеме исходных данных.
Замечательные достижения в области машинного обучения в современных системах ИИ, будь то на принципе «снизу вверх» или «сверху вниз», относятся к узкому и четко определенному пространству гипотез и концепций – речь о строго описанном наборе игровых фигур и ходов и заранее заданном наборе изображений. А вот дети, как и ученые, порой меняют свои воззрения радикальным образом (налицо смена парадигмы), а не просто модифицируют ранее усвоенные концепции.
Четырехлетние дети сразу узнают кошек и понимают слова, а также способны к творческим, поистине удивительным новым выводам, которые выходят далеко за рамки их опыта. Мой собственный внук недавно объяснил, например, что, если взрослому захочется снова стать ребенком, ему не нужно есть никаких полезных овощей, так как именно полезные овощи заставляют ребенка взрослеть. Такого рода гипотезы, в правдоподобность которых не поверит ни один взрослый, характерны для детей младшего возраста. Фактически нам с коллегами удалось доказать, что дошкольники придут к маловероятным гипотезам скорее, чем дети старшего возраста и взрослые[173]. Откуда берется этот способ творческого обучения и инноваций – можно лишь догадываться.
Однако анализ детского поведения может пригодиться программистам, обучающим компьютеры. Две особенности детского познания особенно поразительны. Дети учатся активно, а не просто пассивно усваивают данные, как ИИ. Ученые ставят эксперименты, а дети стремятся извлекать информацию из окружающего мира посредством бесконечных игр и вопросов. Недавние исследования показали, что такая практика на самом деле систематизирована, структурирована и хорошо адаптирована для поиска убедительных доказательств в поддержку формирования гипотез и выбора теорий[174]. Наделение машин любознательностью и предоставление им возможности активно взаимодействовать с миром может оказаться полезным подспорьем для организации более реалистического, более полноценного обучения.
Во-вторых, дети, в отличие от существующих ИИ, учатся в социальной среде и в контексте культуры. Люди не обучаются изолированно, они пользуются накопленной мудростью прошлых поколений. Недавние исследования показали, что даже дошкольники учатся через подражание и наглядные примеры других людей. При этом они не просто пассивно внимают учителям. Нет, они воспринимают информацию удивительно тонким, «чувствительным» образом, делая сложные выводы о том, откуда она поступает и насколько заслуживает доверия, а также систематически интегрируют собственный опыт с тем, что им довелось услышать [175].
Выражения «искусственный интеллект» и «машинное обучение» звучат пугающе. В некоторых отношениях мы беспокоимся обоснованно. Эти системы используются, например, для управления оружием, и это чревато серьезными проблемами. Тем не менее глупость «от природы» может нанести гораздо больший урон, нежели искусственный интеллект; мы, люди, должны стать намного умнее, чем были в прошлом, чтобы должным образом контролировать и регулировать новые технологии. Но у общества нет веских причин для апокалиптического (или утопического) отношения к ИИ, который якобы заменит людей. Во всяком случае, пока мы не преодолеем основной парадокс обучения – что лучший нынешний искусственный интеллект не в состоянии конкурировать с обычным четырехлетним ребенком.
Глава 22
Мечты «алгористов» об объективности